Summary

使用全头光电阵列和短距离通道同时收集 fMRI 和 fNIRS 测量数据

Published: October 20, 2023
doi:

Summary

我们提出了一种同时收集来自同一受试者的fMRI和fNIRS信号的方法,并覆盖了整个头部fNIRS。该协议已在三名年轻人中进行了测试,并可用于发育研究和临床人群的数据收集。

Abstract

功能性近红外光谱 (fNIRS) 是一种便携式神经成像方法,比功能性磁共振成像 (fMRI) 更稳健、更具成本效益,因此非常适合进行脑功能的自然研究以及用于发育和临床人群。fNIRS和fMRI方法都可以检测功能性大脑激活过程中脑血氧的变化,先前的研究表明,这两种信号之间存在高度的空间和时间对应关系。然而,没有对同时从具有全头fNIRS覆盖的相同受试者收集的两个信号进行定量比较。这种比较对于根据 fMRI 金标准全面验证区域级激活和功能连接是必要的,这反过来又有可能促进在整个生命周期内对两种信号进行比较。我们通过描述一种同时收集fMRI和fNIRS信号数据的协议来解决这一差距,该协议:i)提供全头fNIRS覆盖;ii) 包括非皮质全身生理信号回归的短距离测量;iii)实施两种不同的方法,用于fNIRS测量的光电点到头皮共同配准。介绍了来自三个受试者的 fMRI 和 fNIRS 数据,并讨论了调整方案以测试发育和临床人群的建议。目前成人的设置允许平均约 40 分钟的扫描会话,其中包括功能和结构扫描。该协议概述了使fNIRS设备适应磁共振(MR)环境所需的步骤,为数据记录和光电管到头皮共同配准提供了建议,并讨论了协议的潜在修改,以适应现有MR-safe fNIRS系统的具体情况。来自闪烁棋盘任务的代表性特定受试者响应说明了该协议在 MR 环境中测量全头 fNIRS 信号的可行性。该协议对于有兴趣在整个生命周期内针对 fMRI 验证 fNIRS 信号的研究人员尤其重要。

Introduction

近三十年来,人们一直在通过功能性磁共振成像 (fMRI) 在成人大脑中研究认知功能。尽管功能磁共振成像(fMRI)提供了高空间分辨率以及功能和结构图像,但对于在自然环境中进行的研究或用于婴儿和临床人群的研究,它通常不实用。这些限制极大地限制了我们对大脑功能的理解。fMRI 的替代方案是使用更具成本效益且对运动更稳健的便携式方法,例如功能性近红外光谱 (fNIRS)1,2,3。fNIRS已被用于婴幼儿,以评估一系列认知领域的大脑功能,例如语言发展,社会相关信息的处理和对象处理4,5,6。fNIRS也是一种神经影像学方法,特别适合检测临床人群,因为它有可能在7,8,9岁人群中重复检测和监测。尽管其适用性很广,但没有研究定量比较同时从同一受试者收集的具有全头部覆盖率的 fMRI 和 fNIRS 信号。这种比较对于根据 fMRI 金标准全面验证区域级激活和感兴趣区域 (ROI) 之间的功能连接是必要的。此外,建立这种模态间对应关系有可能增强对fNIRS的解释,因为它是典型和非典型发育中唯一收集的信号。

fMRI 和 fNIRS 信号都检测功能性脑激活期间脑血氧 (CBO) 的变化10,11。fMRI 依赖于电磁场的变化,并提供 CBO 变化的高空间分辨率12。相比之下,fNIRS使用一系列发光和光检测光电管2测量近红外光的吸收水平。由于fNIRS测量不同波长的吸收变化,因此它可以评估氧血红蛋白和脱氧血红蛋白的浓度变化。先前使用少量光极同时记录 fMRI 和 fNIRS 信号的研究表明,这两种信号具有很高的空间和时间对应关系10。血氧水平依赖性 (BOLD) fMRI 与光学测量之间存在很强的相关性11,13,脱氧血红蛋白与 BOLD 反应的相关性最高,正如先前比较 fNIRS 和 fMRI 血流动力学反应函数 (HRF) 的时间动力学的工作所报告的那样14。这些早期研究实施了运动反应范式(即手指敲击),并使用了有限数量的光电管覆盖初级运动和运动前皮层区域。在过去的十年中,研究已经扩大了关注范围,包括更多的认知任务和静息状态会话,尽管仍然使用有限数量的视光管来覆盖特定的ROI。这些研究表明,fNIRS/fMRI 相关性的变异性取决于光与头皮和大脑的距离15.此外,fNIRS可以提供与fMRI相当的静息态功能连接测量16,17

目前的协议建立在先前工作的基础上,并通过以下方式解决了关键限制:i)提供全头fNIRS覆盖,ii)包括用于非皮层生理信号回归的短距离测量,iii)实施两种不同的方法,用于fNIRS测量值的光电到头皮共同配准,以及iv)能够在两个独立的会话中评估信号的重测可靠性。这种用于同时收集fMRI和fNIRS信号数据的协议最初是为测试年轻人而开发的。然而,该研究的目标之一是创建一个实验装置,用于收集同时的fMRI / fNIRS信号,这些信号随后可以用于测试发育人群。因此,目前的协议也可以作为制定测试幼儿的协议的起点。除了使用全头fNIRS覆盖外,该协议还旨在结合fNIRS硬件领域的最新进展,例如包括短距离通道来测量全身生理信号(即由非皮质来源引起的血管变化,如血压、呼吸和心脏信号)18,19;以及使用 3D 结构传感器进行光电与头皮共配准20.尽管本协议的重点是视觉闪烁棋盘任务的结果,但整个实验包括两个会话,混合了传统的块任务设计、静止状态会话和自然主义观影范式。

该协议描述了使fNIRS设备适应MRI环境所需的步骤,包括帽设计,通过触发同步进行时间对齐以及数据收集开始前所需的幻象测试。如前所述,这里的重点是闪烁棋盘任务的结果,但整个过程不是特定于任务的,可以适用于任何数量的实验范式。该协议进一步概述了数据收集过程中所需的步骤,包括fNIRS电容放置和信号校准,参与者和实验设备设置,以及实验后清理和数据存储。该协议最后概述了专门用于预处理fNIRS和fMRI数据的分析管道。

Protocol

该研究得到了耶鲁大学机构审查委员会(IRB)的批准。所有受试者均获得知情同意。受试者必须通过 MRI 筛查以确保他们安全参与。如果他们有可能影响认知功能的严重躯体或神经系统疾病史(即神经认知或抑郁障碍、创伤、精神分裂症或强迫症),则被排除在外。 注意:当前协议使用具有 100 个长距离通道和 8 个短距离通道(32 个激光二极管源,λ = 785/830 nm,平均功率为 20m…

Representative Results

本节介绍了 fMRI 和 fNIRS 信号的闪烁棋盘任务的代表性受试者特定反应。首先,图6和图7显示了具有代表性的原始fNIRS数据和质量评估,以说明在MRI环境中测量fNIRS信号的实验装置的可行性。图8显示了整个头部光极阵列和灵敏度曲线的示意图。 <img alt="Fi…

Discussion

该协议用于同时收集fMRI和fNIRS信号的数据,使用全头fNIRS光电阵列和短距离通道来测量和回归系统性非皮层生理信号。该协议中的关键步骤包括修改和开发用于在MRI环境中收集fNIRS信号的fNIRS设备。据我们所知,目前还没有一个交钥匙商业系统完全优化,可以使用全头fNIRS阵列同时捕获fMRI和fNIRS测量。目前的协议解决了这一差距,对于那些对两种信号的全头比较感兴趣的研究人员特别相关,尽管它?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项研究得到了以下资金来源的支持:大脑与行为研究基金会的 NARSAD 青年研究员奖资助 (Grant #29736) (SSA)、比尔和梅琳达·盖茨基金会的全球大挑战资助 (Grant #INV-005792) (RNA) 和耶鲁大学心理学系的发现基金资助 (RNA)。作者还要感谢Richard Watts(耶鲁大学脑成像中心)在数据收集过程中的支持,以及Adam Eggebrecht,Ari Segel和Emma Speh(圣路易斯华盛顿大学)在数据分析方面的帮助。

Materials

280 low-profile MRI-compatible grommets for NIRs caps NIRx GRM-LOP
4 128-position NIRS caps with 128x unpopulated slits in 10-5 layout NIRx CP-128-128S Sizes: 52, 54, 56, 60
8 bundles of 4x detector fibers with low-profile tip; MRI-, MEG-, and TMS-compatible.  NIRx DET-FBO- LOW 10 m long
8 bundles of 4x laser source fibers with MRI-compatible low-profile tip NIRx SRC-FBO- LAS-LOW 10 m long
Bundle set of 8 short-channel detectors with specialized ring grommets that fit to low-profile grommets NIRx DET-SHRT-SET Splits a single detector into 8 short channels that may be placed anywhere on a single NIRS cap
Magnetom 3T PRISMA Siemens N/A 128 channel capacity, 64/32/20 channel head coils, 80 mT/m max gradient amplitude, 200 T/m/s slew rate, full neuro sequences
NIRScout XP Core System Unit NIRx NSXP- CHS Up to 64x Laser-2 (or 32x laser-4) illuminators or 64 LED-2 illuminators; up to 32x detectors; capable of tandem (multi-system) and hyperscanning (multi-subject) measurements; compatible with EEG, tDCS, eye-tracking, and other modalities; modules available for fMRI, TMS, MEG compatibility
NIRStar software NIRx N/A Version 15.3
NIRx parallel port replicator NIRx ACC-LPT-REP The parallel prot replicator  comes with three components: parallel port replicator box, USB power cable and BNC adapter
Physiological pulse unit Siemens PPU098 Optical plethysmography allowing the acquisiton of the cardiac rhythm.
Respiratory unit Siemens PERU098  Unit intended for the acquisition of the respiratory amplitude (by means of a pneumatic system and a restraint belt).
Structure Sensor Mark II Occipital 101866 (SN) 3D structure sensor for optode digitization.

Referenzen

  1. Pinti, P., et al. The present and future use of functional near-infrared spectroscopy (fNIRS) for cognitive neuroscience. Annals of the New York Academy of Sciences. 1464 (1), 5-29 (2020).
  2. Quaresima, V., Ferrari, M. Functional Near-Infrared Spectroscopy (fNIRS) for Assessing Cerebral Cortex Function During Human Behavior in Natural/Social Situations: A Concise Review. Organizational Research Methods. 22 (1), 46-68 (2016).
  3. Pinti, P., et al. A Review on the Use of Wearable Functional Near-Infrared Spectroscopy in Naturalistic Environments. The Japanese Psychological Research. 60 (4), 347-373 (2018).
  4. Wilcox, T., Biondi, M. fNIRS in the developmental sciences. Wiley Interdisciplinary Reviews: Cognitive Science. 6 (3), 263-283 (2015).
  5. Blasi, A., Lloyd-Fox, S., Katus, L., Elwell, C. E. fNIRS for Tracking Brain Development in the Context of Global Health Projects. Photonics. 6 (3), 89 (2019).
  6. Aslin, R. N. Questioning the questions that have been asked about the infant brain using near-infrared spectroscopy. Cognitive Neuropsychology. (1-2), 7-33 (2012).
  7. Chen, W. L., et al. Functional Near-Infrared Spectroscopy and Its Clinical Application in the Field of Neuroscience: Advances and Future Directions. Frontiers in Neuroscience. 14, 724 (2020).
  8. Lee, Y. J., Kim, M., Kim, J. S., Lee, Y. S., Shin, J. E. Clinical Applications of Functional Near-Infrared Spectroscopy in Children and Adolescents with Psychiatric Disorders. Journal of Child & Adolescent Psychiatry. 32 (3), 99-103 (2021).
  9. Bonilauri, A., Sangiuliano Intra, F., Baselli, G., Baglio, F. Assessment of fNIRS Signal Processing Pipelines: Towards Clinical Applications. Applied Sciences. 12 (1), 316 (2021).
  10. Kleinschmidt, A., et al. Simultaneous recording of cerebral blood oxygenation changes during human brain activation by magnetic resonance imaging and near-infrared spectroscopy. Journal of Cerebral Blood Flow and Metabolism. 16 (5), 817-826 (1996).
  11. Strangman, G., Culver, J. P., Thompson, J. H., Boas, D. A. A Quantitative Comparison of Simultaneous BOLD fMRI and NIRS Recordings during Functional Brain Activation. NeuroImage. 17 (2), 719-731 (2002).
  12. Glover, G. H. Overview of functional magnetic resonance imaging. Neurosurgery Clinics of North America. 22 (2), (2011).
  13. Toronov, V., et al. Investigation of human brain hemodynamics by simultaneous near-infrared spectroscopy and functional magnetic resonance imaging. Medical Physics. 28 (4), 521-527 (2001).
  14. Huppert, T. J., Hoge, R. D., Diamond, S. G., Franceschini, M. A., Boas, D. A. A temporal comparison of BOLD, ASL, and NIRS hemodynamic responses to motor stimuli in adult humans. NeuroImage. 29 (2), 368-382 (2006).
  15. Cui, X., Bray, S., Bryant, D. M., Glover, G. H., Reiss, A. L. A quantitative comparison of NIRS and fMRI across multiple cognitive tasks. NeuroImage. 54 (4), 2808-2821 (2011).
  16. Duan, L., Zhang, Y. J., Zhu, C. Z. Quantitative comparison of resting-state functional connectivity derived from fNIRS and fMRI: a simultaneous recording study. NeuroImage. 60 (4), 2008-2018 (2012).
  17. Sasai, S., et al. A NIRS-fMRI study of resting state network. NeuroImage. 63 (1), 179-193 (2012).
  18. Noah, J. A., et al. Comparison of short-channel separation and spatial domain filtering for removal of non-neural components in functional near-infrared spectroscopy signals. Neurophotonics. 8 (1), 015004 (2021).
  19. Wyser, D., et al. Short-channel regression in functional near-infrared spectroscopy is more effective when considering heterogeneous scalp hemodynamics. Neurophotonics. 7 (3), 035011 (2020).
  20. Homolle, S., Oostenveld, R. Using a structured-light 3D scanner to improve EEG source modeling with more accurate electrode positions. Journal of Neuroscience Methods. 326, 108378 (2019).
  21. Jasper, H. H. The ten-twenty electrode system of the International Federation. Electroencephalography and Clinical Neurophysiology. 10, 370-375 (1958).
  22. von Luhmann, A., Li, X., Muller, K. R., Boas, D. A., Yucel, M. A. Improved physiological noise regression in fNIRS: A multimodal extension of the General Linear Model using temporally embedded Canonical Correlation Analysis. NeuroImage. 208, 116472 (2020).
  23. Glasser, M. F., et al. The minimal preprocessing pipelines for the Human Connectome Project. NeuroImage. 80, 105-124 (2013).
  24. Ji, J. L., et al. QuNex-An integrative platform for reproducible neuroimaging analytics. Frontiers in Neuroinformation. 17, 1104508 (2023).
  25. Yucel, M. A., et al. Best practices for fNIRS publications. Neurophotonics. 8 (1), 012101 (2021).
  26. Eggebrecht, A., Muccigrosso, D., Culver, J. NeuroDOT: an extensible Matlab toolbox for streamlined optical brain mapping. Diffuse Optical Spectroscopy and Imaging VII. , (2019).
  27. Jenkinson, M., Beckmann, C. F., Behrens, T. W., Woolrich, M. W., Smith, S. M. FSL. NeuroImage. 62 (2), 782-790 (2012).
  28. Fischl, B. FreeSurfer. NeuroImage. 62 (2), 774-781 (2012).
  29. Penny, W. D., Friston, K. J., Ashburner, J. T., Kiebel, S. J., Nichols, T. E. . Statistical parametric mapping: the analysis of functional brain images. , (2011).
  30. Cox, R. W. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Computers and Biomedical Research. 29 (3), 162-173 (1996).
  31. Oostenveld, R., Fries, P., Maris, E., Schoffelen, J. M. FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience. 2011, 156869 (2011).
  32. Sato, H., et al. A NIRS-fMRI investigation of prefrontal cortex activity during a working memory task. NeuroImage. 83, 158-173 (2013).
  33. Jermyn, M., et al. Fast segmentation and high-quality three-dimensional volume mesh creation from medical images for diffuse optical tomography. Journal of Biomedical Optics. 18 (8), 86007 (2013).
  34. Dehghani, H., et al. Near infrared optical tomography using NIRFAST: Algorithm for numerical model and image reconstruction. Communications in Numerical Methods in Engineering. 25 (6), 711-732 (2008).
  35. Wheelock, M. D., Culver, J. P., Eggebrecht, A. T. High-density diffuse optical tomography for imaging human brain function. The Review of Scientific Instruments. 90 (5), 051101 (2019).
  36. Eggebrecht, A. T., et al. A quantitative spatial comparison of high-density diffuse optical tomography and fMRI cortical mapping. NeuroImage. 61 (4), 1120-1128 (2012).
  37. Boas, D. A., Culver, J. P., Stott, J. J., Dunn, A. K. Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head. Optics Express. 10 (3), 159-170 (2002).
  38. Wang, L., Jacques, S. L., Zheng, L. MCML-Monte Carlo modeling of light transport in multi-layered tissues. Computer Methods and Programs in Biomedicine. 47 (2), 131-146 (1995).
  39. Gregg, N. M., White, B. R., Zeff, B. W., Berger, A. J., Culver, J. P. Brain specificity of diffuse optical imaging: improvements from superficial signal regression and tomography. Frontiers in Neuroenergetics. 2, 14 (2010).
  40. Brigadoi, S., et al. Motion artifacts in functional near-infrared spectroscopy: a comparison of motion correction techniques applied to real cognitive data. NeuroImage. 85, 181-191 (2014).
  41. Pelphrey, K. A., Shultz, S., Hudac, C. M., Vander Wyk, B. C. Research review: Constraining heterogeneity: the social brain and its development in autism spectrum disorder. Journal of Child Psychology and Psychiatry, and Allied Disciplines. 52 (6), 631-644 (2011).
  42. Cui, X., Bray, S., Reiss, A. L. Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics. NeuroImage. 49 (4), 3039-3046 (2010).
  43. Sherafati, A., et al. Global motion detection and censoring in high-density diffuse optical tomography. Human Brain Mapping. 41 (14), 4093-4112 (2020).
  44. Eggebrecht, A. T., et al. Mapping distributed brain function and networks with diffuse optical tomography. Nature Photonics. 8 (6), 448-454 (2014).
  45. Ferradal, S. L., et al. Functional Imaging of the Developing Brain at the Bedside Using Diffuse Optical Tomography. Cerebral Cortex. 26 (4), 1558-1568 (2016).
  46. Winkler, A. M., Ridgway, G. R., Webster, M. A., Smith, S. M., Nichols, T. E. Permutation inference for the general linear model. NeuroImage. 92, 381-397 (2014).
  47. Hassanpour, M. S., et al. Statistical analysis of high density diffuse optical tomography. NeuroImage. 85, 104-106 (2014).
  48. Zhang, F., et al. Correcting physiological noise in whole-head functional near-infrared spectroscopy. Journal of Neuroscience Methods. 360, 109262 (2021).
  49. Duan, L., et al. Wavelet-based method for removing global physiological noise in functional near-infrared spectroscopy. Biomedical Optics Express. 9 (8), 3805-3820 (2018).
  50. Klein, F., Kranczioch, C. Signal Processing in fNIRS: A Case for the Removal of Systemic Activity for Single Trial Data. Frontiers in Human Neuroscience. 13, 331 (2019).
  51. Zhou, X., Sobczak, G., McKay, C. M., Litovsky, R. Y. Comparing fNIRS signal qualities between approaches with and without short channels. PLoS One. 15 (12), 0244186 (2020).
  52. Santosa, H., Zhai, X., Fishburn, F., Sparto, P. J., Huppert, T. J. Quantitative comparison of correction techniques for removing systemic physiological signal in functional near-infrared spectroscopy studies. Neurophotonics. 7 (3), 035009 (2020).
  53. Emberson, L. L., Crosswhite, S. L., Goodwin, J. R., Berger, A. J., Aslin, R. N. Isolating the effects of surface vasculature in infant neuroimaging using short-distance optical channels: a combination of local and global effects. Neurophotonics. 3 (3), 031406 (2016).
  54. Frijia, E. M., et al. Functional imaging of the developing brain with wearable high-density diffuse optical tomography: A new benchmark for infant neuroimaging outside the scanner environment. NeuroImage. 225, 117490 (2021).
  55. Brigadoi, S., Cooper, R. J. How short is short? Optimum source-detector distance for short-separation channels in functional near-infrared spectroscopy. Neurophotonics. 2 (2), 025005 (2015).

Play Video

Diesen Artikel zitieren
Sanchez-Alonso, S., Canale, R. R., Nichoson, I. F., Aslin, R. N. Simultaneous Data Collection of fMRI and fNIRS Measurements Using a Whole-Head Optode Array and Short-Distance Channels. J. Vis. Exp. (200), e65088, doi:10.3791/65088 (2023).

View Video