Presentamos un método para la estimulación química flexible y multimodal y el registro de la actividad neuronal simultánea de muchos gusanos Caenorhabditis elegans . Este método utiliza microfluídica, hardware y software de código abierto y análisis de datos automatizados supervisados para permitir la medición de fenómenos neuronales como la adaptación, la inhibición temporal y la diafonía de estímulos.
Los indicadores fluorescentes de calcio codificados genéticamente han contribuido en gran medida a nuestra comprensión de la dinámica neuronal desde el nivel de las neuronas individuales hasta los circuitos cerebrales completos. Sin embargo, las respuestas neuronales pueden variar debido a la experiencia previa, los estados internos o los factores estocásticos, lo que genera la necesidad de métodos que puedan evaluar la función neuronal en muchos individuos a la vez. Mientras que la mayoría de las técnicas de registro examinan un solo animal a la vez, describimos el uso de microscopía de campo amplio para ampliar las grabaciones neuronales a docenas de Caenorhabditis elegans u otros organismos a escala submilimétrica a la vez. El hardware y el software de código abierto permiten una gran flexibilidad en la programación de experimentos totalmente automatizados que controlan la intensidad y el tiempo de varios tipos de estímulos, incluidos los estímulos químicos, ópticos, mecánicos, térmicos y electromagnéticos. En particular, los dispositivos de flujo microfluídico proporcionan un control preciso, repetible y cuantitativo de los estímulos quimiosensoriales con una resolución de tiempo inferior a un segundo. La tubería de análisis de datos semiautomatizada NeuroTracker extrae respuestas neuronales individuales y de toda la población para descubrir cambios funcionales en la excitabilidad y dinámica neuronal. Este artículo presenta ejemplos de medición de la adaptación neuronal, la inhibición temporal y la diafonía de estímulos. Estas técnicas aumentan la precisión y la repetibilidad de la estimulación, permiten la exploración de la variabilidad de la población y son generalizables a otras señales fluorescentes dinámicas en pequeños biosistemas, desde células y organoides hasta organismos completos y plantas.
Las técnicas de imagen de calcio han permitido el registro no invasivo de la dinámica neuronal in vivo en tiempo real utilizando microscopía de fluorescencia e indicadores de calcio codificados genéticamente expresados en células diana 1,2,3. Estos sensores suelen utilizar una proteína fluorescente verde (GFP), como la familia de péptidos GFP-calmodulina-M13 (GCaMP), para aumentar la intensidad de fluorescencia tras la activación neuronal y los niveles elevados de calcio intracelular. Las imágenes de calcio han sido especialmente poderosas en el nematodo C. elegans para examinar cómo funcionan las neuronas y los circuitos neuronales en animales vivos, comportándose 4,5,6,7,8,9,10, ya que su naturaleza transparente significa que no se requiere ningún proceso quirúrgico para el acceso óptico, y los promotores de genes específicos de células dirigen la expresión a las células de interés. Estas técnicas a menudo hacen uso de dispositivos microfluídicos, que proporcionan ambientes controlados con precisión para estudiar fenómenos biológicos, químicos y físicos a pequeña escala física11,12. Los dispositivos microfluídicos abundan para medir la actividad neuronal, con nuevos diseños continuamente en desarrollo, y se fabrican fácilmente en el laboratorio de investigación. Sin embargo, muchos diseños atrapan a un solo animal a la vez, limitando el rendimiento experimental 7,9,13. Las respuestas neuronales a menudo varían sustancialmente entre los animales debido a diferencias en la experiencia previa, estados internos como el estrés o el hambre, o factores estocásticos como los niveles de expresión génica. Estas diferencias establecen la necesidad de métodos que puedan estimular y observar simultáneamente muchos animales y extraer información de los individuos4.
Además, ciertos fenómenos neuromoduladores se hacen evidentes sólo bajo condiciones específicas de estimulación, como la inhibición temporal14, que se refiere a la breve supresión de las respuestas cuando la estimulación ocurre en rápida sucesión. Los sistemas electrofisiológicos pueden impulsar la actividad neuronal a través de un amplio espacio de estímulo para este propósito, modulando, por ejemplo, la corriente de pulso eléctrico, el voltaje, la frecuencia, la forma de onda, el ciclo de trabajo y la sincronización de los trenes de estímulos periódicos. La estimulación indirecta por estímulos detectados naturalmente o sistemas optogenéticos se beneficiaría de una amplitud similar de mecanismos de control. Actualmente, muchos estímulos naturales se presentan de una manera simple “on-off”, como la presentación y eliminación de olores, utilizando sistemas comerciales que han tardado en agregar flexibilidad. Sin embargo, los microcontroladores de bajo costo ahora pueden automatizar la entrega de varios tipos de estímulos de una manera que se puede personalizar según las necesidades de los investigadores. Combinados con la microfluídica, estos sistemas han logrado el objetivo de aumentar el rendimiento experimental y la flexibilidad, permitiendo que las respuestas neuronales a una variedad de estímulos precisos se midan simultáneamente en muchos animales 4,6. La estimulación multimodal se puede utilizar para interrogar aún más los circuitos neuronales, por ejemplo, mediante el monitoreo de los cambios en la excitabilidad neuronal cuando se estimula consistentemente antes, durante y después de una perturbación ortogonal como la exposición a drogas4. Los beneficios de los sistemas de microscopía abiertos y económicos son claros para avanzar en la investigación científica, pero en la práctica, la necesidad de abastecimiento de piezas, construcción y validación del rendimiento puede impedir la adopción de estas técnicas.
Este protocolo tiene como objetivo aliviar algunos de estos desafíos técnicos. Mientras que los protocolos anteriores se han centrado en el uso de dispositivos microfluídicos y la estimulación básica 9,15,17, describimos aquí la construcción y el uso de un sistema de administración de estímulos flexible, automatizado y multimodal para imágenes neuronales en C. elegans u otros organismos pequeños utilizando dispositivos microfluídicos previamente descritos4. El sistema de código abierto está programado a través de archivos de texto simples para definir los experimentos, y el programa de análisis de datos NeuroTracker extrae semiautomáticamente los datos de actividad neuronal de los videos del microscopio. Demostramos este sistema con ejemplos de evaluación de la inhibición temporal, la desinhibición y la diafonía de estímulos utilizando la neurona quimiosensorial AWA, que se despolariza en respuesta a diferentes olores de alimentos o en respuesta a la luz al expresar canales iónicos optogenéticos sensibles a la luz 5,6.
En este protocolo, describimos un sistema de microscopía de acceso abierto para la evaluación de fenómenos de actividad neuronal utilizando la entrega temporalmente precisa de diferentes patrones de estímulo. La plataforma microfluídica ofrece estímulos repetibles mientras mantiene a decenas de animales en el campo de visión del microscopio. Pocos paquetes de software de microscopía comerciales permiten la fácil programación de varios patrones de sincronización de estímulos, y los que lo hacen a menudo requie…
The authors have nothing to disclose.
Agradecemos a Fox Avery por probar estos protocolos y revisar el manuscrito y a Eric Hall por la asistencia de programación. El financiamiento para los métodos presentados en este documento fue proporcionado en parte por la National Science Foundation 1724026 (D.R.A.).
Bacterial strains | |||
E. coli (OP50) | Caenorhabditis Genetics Center (CGC) | Cat# OP50 | |
Experimental models: Organisms/strains | |||
C. elegans strains expressing GCaMP (and optionally, Chrimson) in desired neurons | Caenorhabditis Genetics Center (CGC) or corresponding authors of published work | NZ1091, for example | |
Chemicals, Treatments, and Worm Preparation Supplies | |||
2,3-Butanedione | Sigma-Aldrich | Cat# B85307 | diacetyl, example chemical stimulus |
Calcium chloride, CaCl2 | Sigma-Aldrich | Cat# C3881 | |
Fluorescein, Sodium salt | Sigma-Aldrich | Cat# F6377 | |
Glass water repellant | Rain-X | Cat #800002250 | glass hydrophobic treatment (single-use) |
Magnesium chloride, MgCl2 | Sigma-Aldrich | Cat# M2393 | |
Nematode Growth Medium (NGM) agar | Genesee | Cat #: 20-273NGM | |
Petri dishes (60 mm) | Tritech | Cat #T3305 | |
Poly(dimethyl siloxane) (PDMS): Sylgard 184 | Dow Chemical | Cat# 1673921 | |
Potassium phosphate monobasic | Sigma-Aldrich | Cat# P5655 | |
Potassium phosphate dibasic | Sigma-Aldrich | Cat# P8281 | |
Sodium chloride, NaCl | Sigma-Aldrich | Cat# S7653 | |
(tridecafluoro-1,1,2,2-tetrahydrooctyl)trichlorosilane (TFOCS) | Gelest | CAS# 78560-45-9 | glass hydrophobic treatment (durable) |
Software and algorithms | |||
Arduino IDE | Arduino | https://www.arduino.cc/en/software | |
ImageJ | NIH | https://imagej.nih.gov/ij/ | |
MATLAB | MathWorks | https://www.mathworks.com/products/matlab.html | |
Micro-manager | Micro-manager | https://micro-manager.org/ | |
Microscope control software | Albrecht Lab | https://github.com/albrechtLab/MicroscopeControl | |
Neurotracker data analysis software | Albrecht Lab | https://github.com/albrechtLab/Neurotracker | |
Automated Microscope and Stimulation System | |||
Axio Observer.A1 inverted microscope set up for epifluorescence (GFP filter cubes, 5× objective or similar) | Zeiss | Cat #491237-0012-000 | |
Excelitas X-cite XYLIS LED illuminator | Excelitas | Cat #XYLIS | |
Orca Flash 4.0 Digital sCMOS camera | Hamamatsu | Cat #C11440-22CU | |
Arduino nano | Arduino | Cat #A000005 | |
3-way Miniature Diapragm Isolation Valve (LQX12) | Parker | Cat #LQX12-3W24FF48-000 | Valve 1: Control |
2-way normally-closed (NC) Pinch Valve | Bio-Chem Valve Inc | Cat #075P2-S432 | Valve 2: Outflow |
3-way Pinch Valve | NResearch | Cat #161P091 | Valve 3: Stimulus selection |
Optogenetic stimulation LED and controller (615 nm) | Mightex | Cat #PLS-0625-030-S and #SLA-1200-2 | |
ValveLink 8.2 digital/manual valve controller | AutoMate Scientific | Cat #01-18 | |
Wires and connectors | various | See Fig. 2 of Cell STARS Protocol (Lawler, 2021) | |
Microfluidic Device Preparation | |||
Dremel variable speed rotary cutter 4000 | Dremel | Cat #F0134000AB | Set speed to 5k RPM for cutting glass |
Dremel drill press rotary tool workstation | Dremel | Cat #220-01 | |
Diamond drill bit | Dremel | Cat #7134 | |
Glass slide, 1 mm thick | VWR | Cat #75799-268 | |
Glass scribe (Diamond scriber) | Ted Pella | Cat #54468 | |
Luer 3-way stopcock | Cole-Parmer | Cat #EW-30600-07 | |
Luer 23 G blunt needle | VWR | Cat #89134-100 | |
Microfluidic device | Corresponing author or fabricate from CAD files associated with this article | N/A | |
Microfluidic device clamp | Warner Instruments (or machine shop) | P-2 | |
Microfluidic tubing, 0.02″ ID | Cole-Parmer | Cat #EW-06419-01 | |
Tube 19 G, 0.5″ | New England Small Tube | Cat #NE-1027-12 |