Summary

在气液界面上生长的原代鼻上皮细胞的感染,以表征人类冠状病毒与宿主的相互作用

Published: September 22, 2023
doi:

Summary

鼻上皮是所有呼吸道病原体遇到的主要屏障部位。在这里,我们概述了使用作为气液界面 (ALI) 培养物生长的原代鼻上皮细胞来表征生理相关系统中人类冠状病毒与宿主相互作用的方法。

Abstract

在过去20年中,三种高致病性人类冠状病毒(HCoV)——SARS-CoV(2002年)、MERS-CoV(2012年)和SARS-CoV-2(2019年)——已经出现并引发了重大的公共卫生危机。另外四种HCoV每年导致很大一部分普通感冒病例(HCoV-NL63、-229E、-OC43和-HKU1),这凸显了在生理相关系统中研究这些病毒的重要性。HCoV进入呼吸道并在鼻上皮中建立感染,鼻上皮是所有呼吸道病原体遇到的主要部位。我们使用原代鼻上皮培养系统,其中患者来源的鼻腔样本在气液界面 (ALI) 生长,以研究这个重要前哨位点的宿主-病原体相互作用。这些培养物概括了 体内 气道的许多特征,包括存在的细胞类型、纤毛功能和粘液产生。我们描述了表征 HCoV 感染后鼻腔 ALI 培养物中病毒复制、宿主细胞嗜性、病毒诱导的细胞毒性和先天免疫诱导的方法,以最近比较致死性和季节性 HCoV 的工作为例1。对鼻子中宿主-病原体相互作用的了解的增加有可能为针对HCoV和其他呼吸道病毒的抗病毒疗法提供新的靶点,这些病毒可能会在未来出现。

Introduction

迄今为止,已发现七种人类冠状病毒 (HCoV),并引起一系列呼吸道疾病2。常见或季节性 HCoV(HCoV-NL63、-229E、-OC43 和 -HKU1)通常与上呼吸道病变相关,每年估计引起 10%-30% 的普通感冒病例。虽然这是与常见 HCoV 相关的典型临床表型,但这些病毒可在高危人群中引起更严重的下呼吸道疾病,包括儿童、老年人和免疫功能低下个体 3,4。在过去20年中,出现了三种致病性HCoV并造成了重大突发公共卫生事件,包括严重急性呼吸系统综合症(SARS)-CoV、中东呼吸系统综合症(MERS)-CoV和SARS-CoV-2。致命的HCoV与更严重的呼吸道病变有关,中东呼吸综合征冠状病毒病例的病死率为>34%(自2012年出现以来,2500多例病例中有894例死亡)5,6清楚地说明了这一点。值得注意的是,致命的HCoV还会引起一系列呼吸道疾病,从无症状感染到致命性肺炎,正如正在进行的COVID-19大流行所见7。

与其他呼吸道病原体一样,HCoV 进入呼吸道并在鼻上皮中建立生产性感染8。扩散到下气道被认为与从口腔/鼻腔到肺部的误吸有关,其中 HCoV 引起更显着的下呼吸道病变 9,10,11。因此,鼻子是病毒进入的初始门户,并且是感染的主要屏障,其强大的粘液纤毛清除机制和独特的先天免疫机制旨在防止病毒进一步传播到下气道12,13。例如,据报道,鼻上皮细胞表达高于平均水平的抗病毒干扰素和干扰素刺激基因的基础水平,这表明鼻细胞可能为对呼吸道病毒的早期反应做好准备14,15,16

我们之前曾利用在气液界面 (ALI) 生长的患者来源的原代鼻上皮细胞来模拟 HCoV 感染开始的鼻子中的 HCoV 与宿主的相互作用。鼻腔 ALI 培养物对致病性(SARS-CoV-2 和 MERS-CoV)和常见 HCoV(HCoV-NL63 和 HCoV-229E)均有效,并且与传统的气道上皮细胞系(如 A549(一种肺腺癌细胞系))相比具有各种优势16,17。分化后,鼻ALI培养物包含异质性细胞群,并表现出体内鼻上皮预期的许多功能,例如粘膜纤毛清除机制18。与下气道培养系统(如人支气管上皮细胞,HBEC)相比,鼻细胞也具有优势,因为与使用支气管镜检查等技术获得HBECs相比,通过细胞学刷取鼻上皮细胞的侵入性要小得多19,20,21

本文描述了利用这种鼻ALI培养系统来表征鼻上皮中HCoV-宿主相互作用的方法。我们在最近发表的作品中应用了这些方法来比较 SARS-CoV-2、MERS-CoV、HCoV-NL63 和 HCoV-229E11617。尽管这些方法和代表性结果强调了该鼻细胞模型中HCoV的研究,但该系统对其他HCoV以及其他呼吸道病原体具有高度适应性。此外,这些方法可以更广泛地应用于其他ALI培养系统,以研究病毒复制和细胞嗜性,以及感染后的细胞毒性和先天免疫诱导。

Protocol

鼻腔标本的使用得到了宾夕法尼亚大学机构审查委员会(协议#800614)和费城弗吉尼亚州机构审查委员会(协议#00781)的批准。 1.鼻腔ALI培养物感染 注:临床标本的采集以及鼻腔ALI培养物的生长和分化不在本文的讨论范围之内。培养原代鼻上皮细胞的具体方法可以在最近发表的利用这些培养物的著作中找到 18,22,23。<sup…

Representative Results

代表性数字部分改编自手稿 Otter 等人 1 中的数据。根据上述方案,来自四个或六个供体的鼻腔 ALI 培养物感染了四种 HCoV(SARS-CoV-2、MERS-CoV、HCoV-NL63 和 HCoV-229E)中的一种,每种病毒的平均顶端脱落病毒滴度如图 1A 所示。虽然所有这四种 HCoV 在鼻腔 ALI 培养物中都能有效复制,但 SARS-CoV-2 和 HCoV-229E 的复制效率最高。请注意,这些是平均病毒滴度,并且最近?…

Discussion

这里详述的方法描述了一种原代上皮培养系统,其中患者来源的鼻上皮细胞在气液界面上生长,并应用于HCoV-宿主相互作用的研究。一旦分化,这些鼻 ALI 培养物概括了 体内 鼻上皮的许多特征,包括具有纤毛细胞、杯状细胞和基底细胞的异质性细胞群,以及完整的粘液纤毛功能,纤毛和粘液分泌物跳动强劲。与传统的呼吸道上皮细胞系相比,这种异质细胞群是该培养系统的一个关键优势,?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

本研究的资金来源如下:美国国立卫生研究院 (NIH) R01AI 169537(SRW 和 N.A.C.)、NIH R01AI 140442 (S.R.W.)、VA Merit Review CX001717 (N.A.C.)、VA Merit Review BX005432(S.R.W. 和 N.A.C.)、宾夕法尼亚大学冠状病毒和其他新兴病原体研究中心 (S.R.W.)、Laffey-McHugh 基金会(S.R.W. 和 N.A.C.), T32 AI055400 (CJO)、T32 AI007324 (AF)。

Materials

Alexa Fluor secondary antibodies (488, 594, 647) Invitrogen Various
BSA (bovine serum albumin) Sigma-Aldrich A7906
cOmplete mini EDTA-free protease inhibitor Roche 11836170001
Cytotoxicity detection kit Roche 11644793001
DMEM (Dulbecco's Modified Eagle Media) Gibco 11965-084
DPBS (Dulbecco's Phosphate Buffered Saline) Gibco 14190136
DPBS + calcium + magnesium Gibco 14040-117
Endohm-6G measurement chamber World Precision Instruments ENDOHM-6G
Epithelial cell adhesion marker (EpCAM; CD326) eBiosciences 14-9326-82
Epithelial Volt/Ohm (TEER) Meter (EVOM) World Precision Instruments 300523
FBS (Fetal Bovine Serum) HyClone SH30071.03
FV10-ASW software for imaging Olympus Version 4.02
HCoV-NL63 (Human coronavirus, NL63) BEI Resources NR-470
HCoV-NL63 nucleocapsid antibody Sino Biological 40641-V07E
Hoescht stain Thermo Fisher H3570
Laemmli sample buffer (4x) BIO-RAD 1610747
LLC-MK2 cells ATCC CCL-7 To titrate HCoV-NL63
MERS-CoV (Human coronavirus, Middle East Respiratory Syndrome Coronavirus (MERS-CoV), EMC/2012) BEI Resources  NR-44260
MERS-CoV nucleocapsid antibody Sino Biological 40068-MM10
MUC5AC antibody Sigma-Aldrich AMAB91539
Olympus Fluoview confocal microscope Olympus FV1000
Phalloidin-iFluor 647 stain Abcam ab176759
PhosStop easy pack (phosphatase inhibitors)  Roche PHOSS-RO
Plate reader  Perkin Elmer HH34000000 Any plate reader or ELISA reader is sufficient; must be able to read absorbance at 492 nm
RIPA buffer (50 mM Tris pH 8; 150 mM NaCl; 0.5% deoxycholate; 0.1% SDS; 1% NP40) Thermo Fisher 89990 Can prep in-house or purchase
RNeasy Plus Kit Qiagen 74134
SARS-CoV-2 (SARS-Related Coronavirus 2, Isolate USA-WA1/2020) BEI Resources NR-52281
SARS-CoV-2 nucleocapsid antibody Genetex GTX135357
Triton-X 100 Fisher Scientific BP151100
Type IV β- tubulin antibody Abcam ab11315
VeroCCL81 cells ATCC CCL-81 To titrate MERS-CoV
VeroE6 cells ATCC CRL-1586 To titrate SARS-CoV-2

Referenzen

  1. Otter, C. J., et al. Infection of primary nasal epithelial cells differentiates among lethal and seasonal human coronaviruses. Proceedings of the National Academy of Sciences of the United States of America. 120 (15), 2218083120 (2023).
  2. Fehr, A., Perlman, S. Coronaviruses: An overview of their replication and pathogenesis. Methods in Molecular Biology. 1282, 1-23 (2015).
  3. Gaunt, E. R., Hardie, A., Claas, E. C. J., Simmonds, P., Templeton, K. E. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. Journal of Clinical Microbiology. 48 (8), 2940-2947 (2010).
  4. Kesheh, M. M., Hosseini, P., Soltani, S., Zandi, M. An overview on the seven pathogenic human coronaviruses. Reviews in Medical Virology. 32 (2), 2282 (2022).
  5. MERS-CoV Worldwide Overview. European Centre for Disease Prevention and Control Available from: https://www.ecdc.europa.eu/en/middle-east-respiratory-syndrome-coronavirus-mers-cov-situation-update (2022)
  6. Cao, Y., Liu, X., Xiong, L., Cai, K. Imaging and clinical features of patients with 2019 novel coronavirus SARS-CoV-2: A systematic review and meta-analysis. Journal of Medical Virology. 92 (9), 1449-1459 (2020).
  7. Vareille, M., Kieninger, E., Edwards, M. R., Regamey, N. The airway epithelium: Soldier in the fight against respiratory viruses. Clinical Microbiology Reviews. 24 (1), 210-229 (2011).
  8. Farzal, Z., et al. Comparative study of simulated nebulized and spray particle deposition in chronic rhinosinusitis patients. International Forum of Allergy and Rhinology. 9 (7), 746-758 (2019).
  9. Gaeckle, N. T., Pragman, A. A., Pendleton, K. M., Baldomero, A. K., Criner, G. J. The oral-lung axis: The impact of oral health on lung health. Respiratory Care. 65 (8), 1211-1220 (2020).
  10. Hou, Y., et al. SARS-CoV-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell. 182, 429-446 (2020).
  11. Hariri, B. M., Cohen, N. A. New insights into upper airway innate immunity. American Journal of Rhinology and Allergy. 30 (5), 319-323 (2016).
  12. Hiemstra, P. S., McCray, P. B., Bals, R. The innate immune function of airway epithelial cells in inflammatory lung disease. European Respiratory Journal. 45 (4), 1150-1162 (2015).
  13. Hatton, C. F., et al. Delayed induction of type I and III interferons mediates nasal epithelial cell permissiveness to SARS-CoV-2. Nature Communications. 12 (1), 7092 (2021).
  14. Sungnak, W., et al. SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nature Medicine. 26 (5), 681-687 (2020).
  15. Li, Y., et al. SARS-CoV-2 induces double-stranded RNA-mediated innate immune responses in respiratory epithelial-derived cells and cardiomyocytes. Proceedings of the National Academy of Sciences of the United States of America. 118 (16), 2022643118 (2021).
  16. Comar, C. E., et al. MERS-CoV endoribonuclease and accessory proteins jointly evade host innate immunity during infection of lung and nasal epithelial cells. Proceedings of the National Academy of Sciences of the United States of America. 119 (21), 2123208119 (2022).
  17. Lee, R. J., et al. Bacterial D-amino acids suppress sinonasal innate immunity through sweet taste receptors in solitary chemosensory cells. Science Signaling. 10 (495), (2017).
  18. Brewington, J. J., et al. Brushed nasal epithelial cells are a surrogate for bronchial epithelial CFTR studies. JCI Insight. 3 (13), 99385 (2018).
  19. Comer, D. M., Elborn, J. S., Ennis, M. Comparison of nasal and bronchial epithelial cells obtained from patients with COPD. PLoS One. 7 (3), e32924 (2012).
  20. Vanders, R. L., Hsu, A., Gibson, P. G., Murphy, V. E., Wark, P. A. B. Nasal epithelial cells to assess in vitro immune responses to respiratory virus infection in pregnant women with asthma. Respiratory Research. 20 (1), 259 (2019).
  21. Lee, R. J., et al. Fungal aflatoxins reduce respiratory mucosal ciliary function. Scientific Reports. 6, 33221 (2016).
  22. Patel, N. N., et al. Fungal extracts stimulate solitary chemosensory cell expansion in noninvasive fungal rhinosinusitis. International Forum of Allergy and Rhinology. 9 (7), 730-737 (2019).
  23. Baer, A., Kehn-Hall, K. Viral concentration determination through plaque assays: Using traditional and novel overlay systems. Journal of Visualized Experiments. 93 (93), e52065 (2014).
  24. Robinot, R., et al. SARS-CoV-2 infection induces the dedifferentiation of multiciliated cells and impairs mucociliary clearance. Nature Communications. 12 (1), 4354 (2021).
  25. Whitsett, J. A. Airway epithelial differentiation and mucociliary clearance. Annals of the American Thoracic Society. 15, S143-S148 (2018).
  26. Gao, N., Raduka, A., Rezaee, F. Respiratory syncytial virus disrupts the airway epithelial barrier by decreasing cortactin and destabilizing F-actin. Journal of Cell Science. 135 (16), 259871 (2022).
  27. Schmidt, H., et al. IL-13 impairs tight junctions in airway epithelia. International Journal of Molecular Sciences. 20 (13), 3222 (2019).
  28. Huang, Z. Q., et al. Interleukin-13 alters tight junction proteins expression thereby compromising barrier function and dampens rhinovirus induced immune responses in nasal epithelium. Frontiers in Cell and Developmental Biology. 8, 572749 (2020).
  29. Saatian, B., et al. Interleukin-4 and interleukin-13 cause barrier dysfunction in human airway epithelial cells. Tissue Barriers. 1 (2), e24333 (2013).
  30. Coles, J. L., et al. A revised protocol for culture of airway epithelial cells as a diagnostic tool for primary ciliary dyskinesia. Journal of Clinical Medicine. 9 (11), 3753 (2020).
  31. Baldassi, D., Gabold, B., Merkel, O. M. Air−liquid interface cultures of the healthy and diseased human respiratory tract: Promises, challenges, and future directions. Advanced NanoBiomed Research. 1 (6), 2000111 (2021).
  32. Seibold, M. A. Interleukin-13 stimulation reveals the cellular and functional plasticity of the airway epithelium. Annals of the American Thoracic Society. 15, S98-S106 (2018).
  33. Morrison, C. B., et al. SARS-CoV-2 infection of airway cells causes intense viral and cell shedding, two spreading mechanisms affected by IL-13. Proceedings of the National Academy of Sciences of the United States of America. 119 (16), 2119680119 (2022).

Play Video

Diesen Artikel zitieren
Otter, C. J., Fausto, A., Tan, L. H., Weiss, S. R., Cohen, N. A. Infection of Primary Nasal Epithelial Cells Grown at an Air-Liquid Interface to Characterize Human Coronavirus-Host Interactions. J. Vis. Exp. (199), e64868, doi:10.3791/64868 (2023).

View Video