O estabelecimento da gravidez é um processo dinâmico que envolve o crosstalk embrionário e uterino complexo. As contribuições precisas do ambiente uterino materno para esses processos permanecem como uma área ativa de investigação. Aqui, protocolos detalhados são fornecidos para ajudar no projeto de modelos animais in vivo para abordar essas questões de pesquisa.
Para que a gravidez seja estabelecida, um blastocisto viável deve interagir com sucesso com um revestimento uterino receptivo (endométrio) para facilitar a implantação e a formação da placenta e permitir a gravidez contínua. As limitações ao sucesso da gestação causadas por defeitos embrionários são bem conhecidas e foram amplamente superadas nas últimas décadas com o surgimento da fertilização in vitro (FIV) e das tecnologias de reprodução assistida. No entanto, até o momento, o campo não superou as limitações causadas por um endométrio inadequadamente receptivo, resultando em taxas de sucesso de FIV estagnadas. As funções ovariana e endometrial estão intimamente interligadas, pois os hormônios produzidos pelo ovário são responsáveis pela ciclicidade menstrual do endométrio. Como tal, ao usar modelos de roedores de gravidez, pode ser difícil determinar se um resultado observado é devido a um déficit ovariano ou uterino. Para superar isso, um modelo de camundongo ovariectomizado foi desenvolvido com transferência embrionária ou decidualização artificial para permitir o estudo de contribuições uterino-específicas para a gravidez. Este artigo fornecerá instruções sobre como realizar ooforectomia e oferecerá insights sobre várias técnicas para fornecer hormônios exógenos para apoiar a decidualização artificial bem-sucedida ou gravidez após a transferência de embriões de doadoras saudáveis. Essas técnicas incluem injeção subcutânea, pastilhas de liberação lenta e minibombas osmóticas. As principais vantagens e desvantagens de cada método serão discutidas, permitindo que os pesquisadores escolham o melhor desenho de estudo para sua pergunta de pesquisa específica.
Com o crescente uso de tecnologias de reprodução assistida nas últimas décadas, muitas barreiras à concepção foram superadas, permitindo que muitos casais constituíssem família apesar dos problemas de fertilidade1. Déficits de ovócitos ou espermatozoides muitas vezes podem ser contornados usando fertilização in vitro ou injeção intracitoplasmática de espermatozoides; No entanto, questões relacionadas ao útero e à receptividade endometrial permanecem uma “caixa preta” elusiva do potencial reprodutivo2.
A gravidez é estabelecida quando um embrião de alta qualidade interage com sucesso com um endométrio receptivo (revestimento uterino). As chances de sucesso da gravidez em qualquer ciclo menstrual são baixas, em torno de 30%3,4. Das que são bem-sucedidas, apenas 50%-60% avançam para além de 20 semanas de gestação, sendo a falha de implantação responsável por 75% das gestações que não atingem 20 semanas3. Apesar desses números remontam ao final da década de 1990, o campo ainda não superou as limitações causadas por um endométrio inadequadamente receptivo. Isso resultou em taxas de sucesso de FIV estagnadas e, às vezes, declinantes nos últimos anos 5,6.
Mulheres com infertilidade inexplicável muitas vezes têm uma janela deslocada de receptividade ou são incapazes de alcançar a receptividade por razões desconhecidas. Recentemente, foi desenvolvido o arranjo de receptividade endometrial, que avalia a expressão de centenas de genes com o objetivo de adequar o momento da transferência embrionária à janela de receptividade do indivíduo 7,8,9. No entanto, o campo ainda carece de uma compreensão da patogênese das complicações da gravidez que se manifestam após o processo de implantação ser concluído.
O sistema reprodutor feminino é altamente dinâmico e sob rígido controle hormonal. O eixo hipotálamo-hipófise-gonadal (HPG) controla a liberação do hormônio luteinizante e do hormônio folículo-estimulante, que regulam aspectos do ciclo ovariano, incluindo a maturação dos folículos e a atividade de estrogênio e progesterona. Por sua vez, o ciclo menstrual uterino é regulado por estrógenos e progesterona10,11. Assim, o estudo dos mecanismos biológicos uterinos é complicado pela influência ovariana. Por exemplo, ao estudar como as terapias contra o câncer podem afetar o útero, pode ser difícil distinguir se qualquer fenótipo uterino observado (como perda gestacional ou acíclica menstrual) é o resultado de um insulto direto ao útero ou um efeito consequente de danos aos ovários.
Para compreender de forma abrangente a fertilidade, as contribuições uterinas para a gravidez devem ser caracterizadas. É importante ressaltar que esse entendimento deve ir além da função uterina sob controle ovariano. Isso não pode ser estudado em humanos; portanto, modelos animais são frequentemente empregados. Como tal, a ooforectomia (OVX) é comumente usada para permitir que os pesquisadores regulem os ciclos estrais dos roedores (análogos ao ciclo menstrual), fornecendo hormônios exogenamente. Além disso, a OVX permite que as respostas uterinas sejam estudadas independentemente da influência ovariana12. No entanto, se os hormônios não forem fornecidos imediatamente pós-OVX, um fenótipo de menopausa ocorrerá, o que precisa ser cuidadosamente considerado pelos pesquisadores.
A OVX é frequentemente utilizada em modelos de roedores13,14,15,16,17 e é relativamente fácil de ser realizada após treinamento adequado. Os métodos variam dependendo se o ovário sozinho ou o ovário e o oviduto são removidos, bem como dependendo da idade do animal (animais adultos, cicladores têm ovários maiores com um corpo lúteo visível em sua superfície, o que significa que seus ovários são mais fáceis de visualizar). Da mesma forma, existem muitos métodos de suplementação hormonal, incluindo injeções subcutâneas14, pastilhas de liberação lenta 15, minibombas osmóticas18 e enxerto ovariano.
Neste artigo, instruções detalhadas são fornecidas sobre como realizar ooforectomia e preparar três tipos de suplementação hormonal, incluindo injeções subcutâneas, pastilhas de liberação lenta e mini bombas osmóticas. Dois protocolos detalhados são fornecidos para desfechos experimentais que se beneficiam da OVX seguida de suplementação hormonal exógena (transferência embrionária e decidualização artificial). Este artigo discute os pontos fortes e fracos de cada abordagem com o objetivo de orientar os pesquisadores sobre como realizar estudos para isolar os impactos sobre o útero, especificamente nos campos de pesquisa da gravidez e fertilidade.
Este artigo fornece instruções passo a passo sobre como realizar OVX e fornecer hormônios exógenos para estudos focados na compreensão das contribuições uterinas para a gravidez e fertilidade. Dois protocolos detalhados são fornecidos sobre duas aplicações experimentais desses métodos, incluindo a realização de transferência de embriões e indução de decidualização artificial.
Embora a realização da OVX possa ser um desafio inicial – especialmente para pesquisadores inician…
The authors have nothing to disclose.
Este trabalho foi possível através do Apoio à Infraestrutura Operacional do Governo do Estado Vitoriano e do Conselho Nacional de Saúde e Pesquisa Médica do Governo Australiano (NHMRC) IRIISS. Este trabalho foi apoiado pela Monash University Faculty of Medicine, Nursing and Health Science Platform Access Grant to A.L.W. (Winship-PAG18-0343) para acessar a Monash Reproductive Services Platform. A A.L.W. é apoiada pelo financiamento DECRA DE21010037 do Australian Research Council (ARC). J.N.H. e L.R.A. são apoiados por uma bolsa do Programa de Treinamento em Pesquisa do Governo Australiano. A L.R.A. é apoiada por uma Bolsa de Excelência de Pós-Graduação Monash. K.J.H. é apoiado por uma ARC Future Fellowship FT190100265.
ALZET 1002 mini osmotic pumps | BioScientifica | 1002 | Delivers 0.25 µL/h for 14 days. Use for section 7 (Experimental procedure – Embryo transfer). |
ALZET 1003D mini osmotic pumps | BioScientifica | 1003D | Delivers 1 µL/h for 14 days. Use for section 8 (Experimental procedure – Artificial decidualization). |
ALZET Reflex 7 mm clips | BioScientifica | 0009971 | Either Reflex clips or Michel clips can be used for wound closure, depending on preference |
ALZET Reflex clip applicator | BioScientifica | 0009974 | Either Reflex clips or Michel clips can be used for wound closure, depending on preference |
ALZET Reflex clip remover | BioScientifica | 0009976 | Either Reflex clips or Michel clips can be used for wound closure, depending on preference |
Bupivicaine injection | Pfizer | NA | Stock 0.5%. Use at 0.05% in saline |
Estradiol | Sigma | E8875 | |
Meloxicam | Ilium | NA | Active constituent 0.5 mg/mL. Use 3.5 mL per 200 mL cage bottle, or as your institutions vet prescribes. |
Michel clips | Daniels | NS-000242 | |
Multi purpose sealant | Dow Corning | 732 | |
Non-surgical embryo transfer (NSET) device | ParaTechs | 60010 | Contains 6 mm speculum. Single use only. |
Progesterone | Sigma | P0130 | Soluble in ethanol. Use for section 3 (Hormone preparation – subcutaneous injection) and section 4 (Hormone preparation – slow-release pellets) |
Progesterone | Sigma | P7556 | Soluble in water. Use for section 5 (Hormone preparation – osmotic mini pumps) |
Refresh eye ointment | Allergan | NA | 42.5% w/v liquid paraffin, 57.3% w/v soft white paraffin |
Rimadyl Carprofen | Zoetis | NA | Stock 50 mg/mL. Use at 5 mg/kg |
Rubber tubing | Dow Corning | 508-008 | Washed in 100% ethanol and cut into 1 cm pieces. Inside diameter 1.57 mm ± 0.23 mm; outside diamater 3.18 mm ± 0.23 mm; wall 0.81 mm. |
Sesame oil | Sigma | S3547 | |
Sofsilk Silk sutures size 3-0 | Covidien | GS-832 |