Makale, yarı otomatik bir görüntüleme prosedürü kullanarak bentik nehir makroomurgasızlarına karşılık gelen sayısallaştırılmış nesneleri taramak, tespit etmek, sıralamak ve tanımlamak için uyarlanmış bir protokolün oluşturulmasına dayanmaktadır. Bu prosedür, makroomurgasız bir topluluğun bireysel boyut dağılımlarının ve boyut metriklerinin yaklaşık 1 saat içinde elde edilmesini sağlar.
Vücut büyüklüğü, doğal topluluklardaki pertürbasyonların etkilerini değerlendirmek için biyoendikatör olarak kullanılabilecek önemli bir fonksiyonel özelliktir. Topluluk büyüklüğü yapısı, taksonlar ve ekosistemler arasındaki antropojenik pertürbasyonlar da dahil olmak üzere biyotik ve abiyotik gradyanlara yanıt verir. Bununla birlikte, bentik makroomurgasızlar gibi küçük gövdeli organizmaların (örneğin, >500 μm ila birkaç santimetre uzunluğunda) manuel ölçümü zaman alıcıdır. Topluluk büyüklüğü yapısının tahminini hızlandırmak için, burada, tatlı su ekosistemlerinin ekolojik durumunu değerlendirmek için en yaygın kullanılan biyogöstergelerden biri olan korunmuş nehir makroomurgasızlarının bireysel vücut büyüklüğünü yarı otomatik olarak ölçmek için bir protokol geliştirdik. Bu protokol, deniz mezozooplanktonlarını su örnekleri için tasarlanmış bir tarama sistemi ile taramak için geliştirilen mevcut bir metodolojiden uyarlanmıştır. Protokol üç ana adımdan oluşur: (1) nehir makroomurgasızlarının alt örneklerinin (ince ve kaba örneklem boyutu kesirleri) taranması ve her görüntüde tespit edilen her nesneyi kişiselleştirmek için sayısallaştırılmış görüntülerin işlenmesi; (2) taranan örneklerdeki makroomurgasızların bireysel görüntülerini detritus ve eserlerden yarı otomatik olarak ayırmak için yapay zeka aracılığıyla bir öğrenme seti oluşturmak, değerlendirmek ve doğrulamak; ve (3) makroomurgasız topluluklarının boyut yapısını tasvir etmek. Protokole ek olarak, bu çalışma kalibrasyon sonuçlarını içerir ve prosedürü makroomurgasız numunelere uyarlamak ve daha fazla iyileştirme için dikkate almak için çeşitli zorlukları ve önerileri sıralar. Genel olarak, sonuçlar, nehir makroomurgasızlarının otomatik vücut büyüklüğü ölçümü için sunulan tarama sisteminin kullanımını desteklemektedir ve boyut spektrumlarının tasvirinin, tatlı su ekosistemlerinin hızlı biyo-değerlendirmesi için değerli bir araç olduğunu göstermektedir.
Bentik makroomurgasızlar, su kütlelerinin ekolojik durumunu belirlemek için biyogöstergeler olarak yaygın olarak kullanılmaktadır1. Makroomurgasız toplulukları tanımlayan endekslerin çoğu taksonomik metriklere odaklanır. Bununla birlikte, vücut büyüklüğünü bütünleştiren yeni biyodeğerlendirme araçları, taksonomik yaklaşımlara alternatif veya tamamlayıcı bir bakış açısı sağlamak için teşvik edilmektedir 2,3.
Vücut büyüklüğü, metabolizma, büyüme, solunum ve hareket4 gibi diğer hayati özelliklerle ilişkili bir metaözellik olarak kabul edilir. Ayrıca, vücut büyüklüğü trofik pozisyonu ve etkileşimleri belirleyebilir5. Bireysel vücut büyüklüğü ile bir topluluktaki boyut sınıfına göre normalleştirilmiş biyokütle (veya bolluk) arasındaki ilişki, boyut spektrumu6 olarak tanımlanır ve logaritmik bir ölçek7’de bireysel boyut arttıkça normalleştirilmiş biyokütlede doğrusal bir azalmanın genel modelini izler. Bu doğrusal ilişkinin eğimi teorik olarak kapsamlı bir şekilde incelenmiştir ve ekosistemler arasındaki ampirik çalışmalar bunu topluluk büyüklüğü yapısının ekolojik bir göstergesi olarak kullanmıştır4. Biyoçeşitlilik-ekosistem işleyişi çalışmalarında başarıyla kullanılan topluluk büyüklüğü yapısının bir diğer sentetik göstergesi, boyut spektrumunun boyut sınıflarının Shannon indeksi veya analogu olarak temsil edilen ve bireysel boyut dağılımlarına göre hesaplanan topluluk büyüklüğü çeşitliliğidir8.
Tatlı su ekosistemlerinde, farklı faunal grupların boyut yapısı, biyotik toplulukların çevresel gradyanlara 9,10,11 ve antropojenik pertürbasyonlara 12,13,14,15,16 tepkisini değerlendirmek için ataksik bir gösterge olarak kullanılır. Makroomurgasızlar bir istisna değildir ve boyut yapıları aynı zamanda çevresel değişikliklere 17,18 ve madencilik 19, arazi kullanımı 20 veya azot (N) ve fosfor (P) zenginleştirme20,21,22 gibi antropojenik bozulmalara da yanıt verir. Bununla birlikte, topluluk büyüklüğü yapısını tanımlamak için yüzlerce kişiyi ölçmek, zaman yetersizliği nedeniyle laboratuvarlarda rutin bir ölçüm olarak kaçınılan sıkıcı ve zaman alıcı bir iştir. Bu nedenle, örnekleri sınıflandırmak ve ölçmek için çeşitli yarı otomatik veya otomatik görüntüleme yöntemleri geliştirilmiştir 23,24,25,26. Bununla birlikte, bu yöntemlerin çoğu, organizmaların bireysel büyüklüğünden daha fazla taksonomik sınıflandırmaya odaklanmıştır ve her türlü makroomurgasız için kullanıma hazır değildir. Deniz plankton ekolojisinde, zooplankton topluluklarının büyüklüğünü ve taksonomik bileşimini belirlemek için bir tarama görüntü analiz sistemi yaygın olarak kullanılmıştır 27,28,29,30,31. Bu cihaz dünya çapında çeşitli deniz enstitülerinde bulunabilir ve tüm numunenin yüksek çözünürlüklü dijital görüntülerini elde etmek için korunmuş zooplankton örneklerini taramak için kullanılır. Mevcut protokol, nehirlerdeki makroomurgasız topluluk büyüklüğü spektrumunu yeni bir cihaz oluşturmaya yatırım yapmadan hızlı bir şekilde otomatik bir şekilde tahmin etmek için bu aracın kullanımını uyarlamaktadır.
Protokol, bir numunenin taranmasından ve numunedeki nesnelerin tek bir görüntüsünü (yani vinyetleri) otomatik olarak elde etmek için tüm görüntünün işlenmesinden oluşur. Şekil, boyut ve gri seviyeli özelliklerin çeşitli ölçümleri her nesneyi karakterize eder ve nesnelerin kategorilere otomatik olarak sınıflandırılmasına izin verir ve bunlar daha sonra bir uzman tarafından doğrulanır. Her organizmanın bireysel boyutu, piksel cinsinden ölçülen organizmanın alanından türetilen elipsoidal biyohacim (mm3) kullanılarak hesaplanır. Bu, numunenin boyut spektrumunun hızlı bir şekilde elde edilmesini sağlar. Bildiğimiz kadarıyla, bu tarama görüntüleme sistemi sadece mezozooplankton örneklerini işlemek için kullanılmıştır, ancak cihaz potansiyel olarak tatlı su bentik makroomurgasızlarla çalışmaya izin verebilir.
Bu nedenle bu çalışmanın genel amacı, daha önce deniz mezozooplankton 27,32,33 ile kullanılan mevcut bir protokolü uyarlayarak korunmuş nehir makroomurgasızlarının bireysel boyutlarını hızlı bir şekilde elde etmek için bir yöntem sunmaktır. Prosedür, su örneklerini taramak için bir tarama cihazı ve taranan görüntüleri işlemek için üç açık yazılım ile çalışan yarı otomatik bir yaklaşım kullanmaktan oluşur. Topluluk büyüklüğü yapısını ve ilgili boyut metriklerini otomatik olarak elde etmek için sayısallaştırılmış nehir makroomurgasızlarını taramak, tespit etmek ve tanımlamak için uyarlanmış bir protokol burada sunulmuştur. Prosedürün değerlendirilmesi ve verimliliği artırmak için kılavuzlar, Kuzeydoğu (NE) İber Yarımadası’ndaki (Ter, Segre-Ebre ve Besòs) üç havzadan toplanan nehir makroomurgasız örneklerinin taranmış 42 görüntüsüne dayanarak da sunulmaktadır.
Örnekler, İspanyol Hükümeti34’ten sürülebilir nehirlerdeki bentik nehir makroomurgasızlarının saha örneklemesi ve laboratuvar analizi protokolünü takiben 100 m nehir uzanımlarında toplandı. Örnekler, çok habitatlı bir anketi takiben bir sörber örnekleyici (çerçeve: 0.3 m x 0.3 m, ağ: 250 μm) ile toplandı. Laboratuvarda, numuneler iki alt numune elde etmek için 5 mm’lik ve 500 μm’lik bir ağ üzerinden temizlendi ve elendi: kaba bir alt numune (5 mm ağ) ve ayrı şişelerde saklanan ve% 70 etanolde saklanan ince bir alt numune (500 μm ağ). Numuneyi iki boyut fraksiyonuna ayırmak, topluluk büyüklüğü yapısının daha iyi tahmin edilmesini sağlar, çünkü büyük organizmalar küçük organizmalardan daha nadir ve daha azdır. Aksi takdirde, taranan numune büyük boyutlu fraksiyonun önyargılı bir temsiline sahiptir.
Gorsky ve ark. 2010 tarafından nehir makroomurgasızları için açıklanan metodolojinin uyarlanması, tatlı su makroomurgasızlarında topluluk büyüklüğü yapısını tahmin etmede yüksek sınıflandırma doğruluğuna izin verir. Sonuçlar, protokolün bir örneklemdeki bireysel boyut yapısını tahmin etme süresini yaklaşık 1 saate indirebileceğini göstermektedir. Bu nedenle, önerilen protokol, tatlı su ekosistemlerindeki bozulmaların etkisini değerlendirmek için makroomurgasız boyut spektrumların…
The authors have nothing to disclose.
Bu çalışma İspanya Bilim, İnovasyon ve Üniversiteler Bakanlığı tarafından desteklenmiştir (hibe numarası RTI2018-095363-B-I00). CERM-UVic-UCC üyeleri Èlia Bretxa, Anna Costarrosa, Laia Jiménez, María Isabel González, Marta Jutglar, Francesc Llach ve Núria Sellarès’e makroomurgasız alan örneklemesi ve laboratuvar sıralamasındaki çalışmaları için ve David Albesa’ya örnek taramasında işbirliği yaptıkları için teşekkür ederiz. Son olarak Josep Maria Gili’ye ve Institut de Ciències del Mar’a (ICM-CSIC) laboratuvar tesislerinin ve tarayıcı cihazının kullanımı için teşekkür ederiz.
Beaker | Labbox | Other containers could be used | |
Dionized water | Icopresa | 8420239600123 | To dilute the ethanol |
Funnel | Vitlab | 41094 | |
Glass vials 8 ml | Labbox | SVSN-C10-195 | 1 vial/subsample |
ImageJ Software | Free access | Version 4.41o/ Image processing software | |
Large frame | Hydroptic | Provided by ZooScan | 24.5 cm x 15.8 cm |
Monalcol 96 (Ethanol 96) | Montplet | 1050JE001 | |
Plankton Identifier Software | Free access | Version 1.2.6/ Automatic identification software | |
Sieve | Cisa | 26852.2 | Nominal aperture 500µ and nominal aperture 0,5 cm |
Tweezers | Bondline | B5SA | Stainless, anti-magnetic, anti-acid |
VueScan 9 x 64 (9.5.09) Software | Hydroptic | Version 9.0.51/ Sacn software | |
Wooden needle | Any plastic or wood needle can be used | ||
Zooprocess Software | Free access | Version 7.14/Image processing software | |
ZooScan | Hydroptic | 54 | Version III/ Scanner |