Das strukturelle Ensemble des monomeren Alpha-Synucleins beeinflusst seine physiologische Funktion und seine physikalisch-chemischen Eigenschaften. Das vorliegende Protokoll beschreibt, wie eine Millisekunden-Wasserstoff/Deuterium-Austausch-Massenspektrometrie und anschließende Datenanalysen durchgeführt werden können, um Konformationsinformationen über das Monomer dieses intrinsisch ungeordneten Proteins unter physiologischen Bedingungen zu bestimmen.
Alpha-Synuclein (aSyn) ist ein intrinsisch ungeordnetes Protein, dessen fibrilläre Aggregate in Lewy-Körpern und Neuriten, den Kennzeichen der Parkinson-Krankheit, reichlich vorhanden sind. Ein Großteil seiner biologischen Aktivität sowie seine Aggregation betreffen jedoch zentral die lösliche Monomerform des Proteins. Die Aufklärung der molekularen Mechanismen der aSyn-Biologie und Pathophysiologie erfordert strukturell hochaufgelöste Methoden und ist empfindlich gegenüber biologischen Bedingungen. Seine nativ entfalteten, metastabilen Strukturen machen monomere aSyn für viele strukturbiologische Techniken unlösbar. Hier wird die Anwendung eines solchen Ansatzes beschrieben: Wasserstoff/Deuterium-Austausch-Massenspektrometrie (HDX-MS) auf der Millisekunden-Zeitskala zur Untersuchung von Proteinen mit geringer thermodynamischer Stabilität und schwachen Schutzfaktoren, wie z.B. aSyn. Auf der Millisekunden-Zeitskala enthalten HDX-MS-Daten Informationen über die Zugänglichkeit von Lösungsmitteln und die wasserstoffgebundene Struktur von aSyn, die bei längeren Markierungszeiten verloren gehen, was letztendlich zu einer strukturellen Auflösung bis zum Aminosäureniveau führt. Daher kann HDX-MS bei hohen strukturellen und zeitlichen Auflösungen Informationen über Konformationsdynamik und Thermodynamik, intra- und intermolekulare Wechselwirkungen und die strukturellen Auswirkungen von Mutationen oder Veränderungen der Umweltbedingungen liefern. Obwohl breit anwendbar, wird gezeigt, wie Millisekunden-HDX-MS-Messungen in monomeren aSyn erfasst, analysiert und interpretiert werden können.
Die Parkinson-Krankheit (PD) ist eine neurodegenerative Erkrankung, von der weltweit Millionen von Menschen betroffensind 1. Es ist gekennzeichnet durch die Bildung von zytoplasmatischen Einschlüssen, die als Lewy-Körper und Lewy-Neuriten in der Substantia nigra pars compacta-Region des Gehirns bekannt sind. Es wurde festgestellt, dass diese zytoplasmatischen Einschlüsse Aggregate des intrinsisch ungeordneten Proteins aSyn2 enthalten. Bei PD und anderen Synucleinopathien wandelt sich aSyn von einem löslichen ungeordneten Zustand in einen unlöslichen, hochstrukturierten Krankheitszustand um. In seiner nativen Form nimmt das monomere aSyn eine breite Palette von Konformationen an, die durch langreichweitige elektrostatische Wechselwirkungen zwischen seinen N- und C-Termini und hydrophobe Wechselwirkungen zwischen seinem C-Terminus und der Nicht-Amyloid-Beta-Komponente (NAC) Region 3,4,5,6 stabilisiert werden. Alle Störungen in diesen stabilisierenden Interaktionen, wie Mutationen, posttranslationale Modifikationen und Veränderungen in der lokalen Umgebung, können zur Fehlfaltung des Monomers führen und so den Prozess der Aggregation auslösen7.
Während eine große Menge an Forschung über die oligomeren und fibrillären Formen von aSyn 8,9,10,11 existiert, besteht ein entscheidender Bedarf, die monomere Form des Proteins zu untersuchen und besser zu verstehen, welche Konformer funktionell sind (und wie) und welche anfällig für Aggregatesind 8,9,10,11 . Da das aSyn-Monomer intrinsisch ungeordnet ist, nur 14 kDa groß ist und schwer zu kristallisieren ist, ist es für die meisten strukturbiologischen Techniken nicht zugänglich. Eine Technik, die in der Lage ist, die Konformationsdynamik des monomeren aSyn zu messen, ist jedoch die Millisekunde HDX-MS, die in letzter Zeit wichtige strukturelle Beobachtungen hervorgebracht hat, die sonst schwierig oder unmöglich zu erhaltenwären 12,13,14. Die Millisekunde HDX-MS misst sensitiv den Durchschnitt des Proteinkonformationsensembles, indem sie den Isotopenaustausch an Amidwasserstoffen überwacht und die Zugänglichkeit von Lösungsmitteln und die Beteiligung des Wasserstoffbrückennetzwerks einer bestimmten Proteinregion auf der Millisekunden-Zeitskala anzeigt. Es ist notwendig, den Millisekundenaspekt des HDX-MS hervorzuheben, da aSyn aufgrund seiner nativ entfalteten, metastabilen Natur eine sehr schnelle Wasserstoffaustauschkinetik aufweist, die sich deutlich unter der unteren Grenze herkömmlicher HDX-MS-Systeme manifestiert. Zum Beispiel hat der größte Teil des aSyn-Moleküls Wasserstoff unter intrazellulären Bedingungen in weniger als 1 s vollständig gegen Deuterium ausgetauscht. Mehrere Labore haben inzwischen Schnellmischgeräte gebaut; In diesem Fall wird ein Prototyp eines schnell mischenden Quench-Flow-Instruments verwendet, das HDX-MS mit einer Totzeit von 50 ms und einer zeitlichen Auflösung von 1 ms ausführen kann15. Während Millisekunden-HDX-MS in letzter Zeit bei der Untersuchung von aSyn akut wichtig war, ist es wertvoll für die Untersuchung von intrinsisch ungeordneten Proteinen / Regionen im weiteren Sinne und einer großen Anzahl von Proteinen mit Schleifen / Regionen, die nur schwach stabil sind. Zum Beispiel Peptidarzneimittel (z. B. Insulin; GLP-1/Glucagon; Tirzepatid) und Peptidfusionsproteine (z. B. der HIV-Inhibitor FN3-L35-T1144) sind wichtige Arzneimittelformate, in denen Struktur- und Stabilitätsinformationen der Lösungsphase ein kritischer Input für Entscheidungen zur Arzneimittelentwicklung sein können, und dennoch ist die Peptideinheit durch HDX-MS auf der Sekundenskala 16,17,18,19,20 oft nur schwach stabil und hartnäckig. . Es hat sich gezeigt, dass emergente HDX-MS-Methoden mit Markierung in den Sekunden/Minuten-Domänen strukturelle Informationen für DNA-G-Quadruplexe ableiten, aber es sollte möglich sein, diese durch die Anwendung von Millisekunden-HDX-MS21 auf vielfältigere Oligonukleotidstrukturen auszudehnen.
HDX-MS-Experimente können auf drei verschiedenen Ebenen durchgeführt werden: (1) bottom-up (wobei das markierte Protein proteolytisch verdaut wird), (2) Middle-Down (wobei das markierte Protein proteolytisch verdaut wird und die resultierenden Peptide durch Soft-Fragmentierungstechniken weiter fragmentiert werden) und (3) Top-Down (wobei Soft-Fragmentierungstechniken das markierte Protein direkt fragmentieren)22 . Submolekulare HDX-MS-Daten ermöglichen es uns daher, das Austauschverhalten auf bestimmte Regionen eines Proteins zu lokalisieren, was es für solche Experimente entscheidend macht, eine ausreichende Sequenzabdeckung zu haben. Die strukturelle Auflösung eines HDX-MS-Experiments hängt von der Anzahl der proteolytischen Peptide oder Fragmente ab, die bei der Verdauung bzw. Weichfragmentierung aus dem Protein stammen. In jedem der drei oben beschriebenen Experimenttypen wird die Änderung des Amidaustauschs an jedem Peptid / Fragment auf die Primärstruktur des Proteins zurückgebildet, um das Verhalten lokalisierter Regionen des Proteins anzuzeigen. Während die höchste strukturelle Auflösung durch Soft-Fragmentierung erreicht wird, liegt die Beschreibung dieser Experimente außerhalb des Rahmens der aktuellen Studie, die sich auf die Messung von aSyn-Monomer-Konformationen konzentriert. Hervorragende Ergebnisse können mit dem hier beschriebenen häufig angewendeten “Bottom-up”-Workflow erzielt werden.
Hier werden Verfahren zur Verfügung gestellt, (1) wie man aSyn-Proben und HDX-MS-Puffer vorbereitet und handhabt, (2) wie man ein Peptid-Mapping für ein Bottom-up-HDX-MS-Experiment durchführt, (3) wie man HDX-MS-Daten auf monomerem aSyn unter physiologischen Bedingungen, insbesondere im Millisekunden-Zeitbereich, erfasst (mit einem speziell angefertigten Instrument; alternative Instrumente zur Millisekundenmarkierung wurden ebenfalls beschrieben), und (4) wie die HDX-MS-Daten verarbeitet und analysiert werden. Methoden zur Verwendung von monomerem aSyn bei physiologischem pH-Wert (7,40) in zwei Lösungsbedingungen werden hier veranschaulicht. Obwohl diese Verfahren für die Untersuchung von aSyn von entscheidender Bedeutung sind, können sie auf jedes Protein angewendet werden und sind nicht auf intrinsisch ungeordnete Proteine beschränkt.
Im vorliegenden Artikel werden die folgenden Verfahren beschrieben: (1) Durchführung von Peptid-Mapping-Experimenten an monomerem aSyn, um die höchste Sequenzabdeckung zu erhalten, (2) Erfassung von Millisekunden-HDX-MS-Daten auf monomerem aSyn unter physiologischen Bedingungen und (3) Durchführung von Datenanalysen und -interpretationen der resultierenden HDX-MS-Daten. Die bereitgestellten Verfahren sind im Allgemeinen einfach auszuführen, jedes Kennzeichnungsexperiment dauert in der Regel nur etwa 8 Stunden für dr…
The authors have nothing to disclose.
NS wird durch das Diamond Jubilee Scholarship des Universitätsrats finanziert. JJP wird durch ein UKRI Future Leaders Fellowship [Fördernummer: MR/T02223X/1] unterstützt.
1 × 100 mm ACQUITY BEH 1.7 μm C18 column | Waters Corporation | 186002346 | Analytical column |
Acetonitrile HPLC grade >99.9% HiPerSolv | VWR | 20060.420 | For LC mobile phases |
CaCl2 | Sigma Aldrich | C5670 | Salt for HDX buffers |
Chronos | Axel Semrau (Purchased from Waters Corporation) | 667006090 | Scheduling software to enable multiple HDX-MS sample injections automatically. Alternative software is available from other vendors e.g. HDXDirector or LEAP Shell |
Deuterium chloride | Goss Scientific (Cambridge Isotope Laboratories) | DLM-2-50 | For HDX labelling buffers |
Deuterium oxide (99.9% D2O) | Goss Scientific (Cambridge Isotope Laboratories) | DLM-4 | Deuterated water |
DynamX 3.0 | Waters Corporation | 176016027 | Isotopic assignment and deuterium incorporation calculation |
Enzymate BEH Pepsin Column | Waters Corporation | 186007233 | Pepsin digestion column |
Formic Acid, 99.0% LC/MS Grade | Fisher Scientific | 10596814 | For LC mobile phases |
Guanidinium hydrochloride | Sigma Aldrich | RDD001-500G | Chaotrope/Denaturant |
HDfleX | University of Exeter | N/A | https://ore.exeter.ac.uk/repository/handle/10871/127982 |
KCl | Sigma Aldrich | P3911 | Salt for HDX buffers |
LEAP HDX-2 CTC PAL sampling robot | Waters Corporation | 725000637 | Autosampler robot |
Leucine enkephalin | Waters Corporation | 186006013 | For mass spectrometry lockspray calibration. |
MassLynx | Waters Corporation | 667004007 | Software controlling inlet methods and mass spectrometer |
Maximum recovery vials | Waters Corporation | 600000670CV | 100 pack including caps – used for quench tray in LEAP HDX-2 |
MgCl2 | Sigma Aldrich | M8266 | Salt for HDX buffers |
Millipore 0.22 µm syringe filters | Millipore | N9CA7069B | Syringe filters |
ms2min | Applied Photophysics Ltd | N/A | fast-mix quench-flow millisecond hdx instrument |
NaCl | Sigma Aldrich | S9888 | Salt for HDX buffers |
Peltier temperature controller | LEAP Technologies Inc. | HP115-COOL/D | Peltier controller to set precise temperature of chambers in the LEAP robot. |
ProteinLynx Global Server 3.0 | Waters Corporation | 715001030 | Peptide identification software. Alternative software is available from other vendors. |
Reagent pot caps | Waters Corporation | 186004632 | 100 pack |
Reagent pots for LEAP HDX-2 | Waters Corporation | 186001420 | 100 pack excluding caps – used for buffers in LEAP HDX-2 |
Sodium deuteroxide (99.5% in D2O) | Goss Scientific (Cambridge Isotope Laboratories) | DLM-57 | For HDX labelling buffers |
Spin filter microcentrifuge tubes (3 kDa MWCO) | Amicon (Merck Sigma Aldrich) | UFC5003 | Micro centrifuge tubes to concentrate protein. This facilitates buffer exchange and accurate sample loading for HDX-MS experiments. |
Synapt G2-Si mass spectrometer | Waters Corporation | 176850035 | Mass spectrometer |
Total recovery vials | Waters Corporation | 600000671CV | 100 pack including caps – used for labelling tray in LEAP HDX-2 |
Tris-HCl | Sigma Aldrich | T3253-250G | Buffer |
Trizma base | Sigma Aldrich | T60040-B2005 | Buffer |
Urea | Sigma Aldrich | U5378-1KG | Chaotrope/Denaturant |
VanGuard 2.1 x 5 mm ACQUITY BEH C18 column | Waters Corporation | 186004623 | Trap desalting column |