Summary

年轻成人和老年沙鼠耳蜗的免疫标记和计数带状突触

Published: April 21, 2022
doi:

Summary

提出了一种通过免疫标记传入突触结构和毛细胞,在老年组织中淬灭自发荧光,解剖和估计耳蜗的长度以及量化通过共聚焦成像获得的图像堆栈中的突触来处理年轻成人和老年沙鼠耳蜗的方案。

Abstract

连接内部毛细胞和传入听觉神经纤维的带状突触的缺失被认为是年龄相关性听力损失的原因之一。检测带状突触丢失的最常见方法是免疫标记,因为它允许从单个耳蜗中的多个视点进行定量采样。然而,感兴趣的结构深埋在骨耳蜗内。沙鼠被用作年龄相关听力损失的动物模型。在这里,描述了固定的常规方案,免疫标记沙鼠耳蜗整个支架,共聚焦成像以及量化带状突触数量和体积。此外,还强调了与从有价值的老年人那里获得优质材料相关的特殊挑战。

沙鼠被安乐死,要么心血管灌注,要么它们的鼓膜大疱被小心地从头骨中解剖出来。耳蜗在顶点和基部打开,并直接转移到固定剂中。无论初始方法如何,耳蜗都会被后固定并随后脱钙。然后用针对突触前和突触后结构和毛细胞的一抗标记组织。接下来,将耳蜗与二级荧光标记抗体一起孵育,这些抗体对各自的主要抗体具有特异性。然后用自发荧光淬灭剂处理老年沙鼠的耳蜗,以减少老年动物组织通常实质性的背景荧光。

最后,将耳蜗解剖成6-11节。重建整个人工耳蜗长度,以便可靠地确定个体之间的特定人工耳蜗位置。按顺序获取的共聚焦图像堆栈有助于可视化所选位置的毛细胞和突触。共聚焦堆栈被解卷积,突触要么使用ImageJ手动计数,要么使用Matlab中定制的图像分析程序对突触结构进行更广泛的量化。

Introduction

与年龄相关的听力损失是世界上最常见的疾病之一,影响着世界上三分之一以上的65岁及以上人口1。其根本原因仍在争论中,并正在积极研究,但可能包括连接内毛细胞(IHC)和传入听觉神经纤维的特殊突触的丧失2。这些带状突触包括突触前结构,其囊泡充满与其相连的神经递质谷氨酸盐,以及突触后α-氨基-3-羟基-5-甲基-4-异噁唑丙酸(AMPA)谷氨酸受体345。在沙鼠中,约20个传入听觉神经纤维接触一个IHC678。IHC上面向莫迪奥卢斯的纤维与大突触带相对,而连接IHC柱侧的纤维则面向小突触带(即,在猫9,沙鼠7,豚鼠10和小鼠311,121314中)。此外,在沙鼠中,突触前带和突触后谷氨酸斑块的大小正相关714。与IHC的双极侧的大带相对的纤维口径小,自发率低,阈值高15。有证据表明,低自发率纤维比位于IHC15柱侧的高自发性低阈值纤维更容易受到噪声暴露10和耳毒性药物16的影响。

带状突触的丧失是耳蜗神经年龄相关性听力损失中最早的退行性事件,而螺旋神经节细胞及其传入听觉神经纤维的丧失则落后于1718。电生理相关性包括听觉脑干反应17 和复合动作电位8的记录;然而,这些并不反映突触丢失的微妙之处,因为低自发率纤维不有助于这些措施16。更有希望的电生理学指标是质量电位衍生的神经指数19 和周震颤时间响应20。然而,只有当动物除了听觉神经纤维丧失之外没有其他耳蜗病理影响剩余听觉神经纤维的活动时,这些才是可靠的8。此外,沙鼠的行为评估阈值与突触数21无关。因此,只有通过直接检查耳蜗组织,才能可靠地定量存活的带状突触,从而确定功能性听觉神经纤维的数量。

蒙古沙鼠(Meriones unguiculatus)是研究与年龄相关的听力损失的合适动物模型。它的寿命短,具有与人类相似的低频听力,易于维护,并且与与年龄相关的听力损失相关的人类病理学表现出相似性2222324。沙鼠在达到36个月大时被认为是衰老的,这接近其平均寿命的结束22。重要的是,在安静环境中饲养和老化的沙鼠中已经证明了与年龄相关的带状突触丧失821

在这里,提出了一种免疫标记,解剖和分析不同年龄的沙鼠(从年轻人到老年人)的耳蜗的方案。使用针对前突触 (CtBP2)、突触后谷氨酸受体贴片 (GluA2) 和 IHC (myoVIIa) 成分的抗体。应用自发荧光淬灭剂,减少老化耳蜗的背景,使荧光信号完好无损。此外,还描述了如何解剖耳蜗以检查感觉上皮和纹状血管。测量耳蜗长度是为了能够选择与特定最佳频率相对应的不同耳蜗位置25。突触数的定量是使用免费软件ImageJ26进行的。使用Matlab中编写的软件自定义来执行单个HC中突触体积和位置的额外定量。该软件不公开,因为作者缺乏提供专业文档和支持的资源。

Protocol

所有协议和程序均由德国下萨克森州有关当局批准,许可证编号为AZ 33.19-42502-04-15/1828和33.19-42502-04-15/1990。该协议适用于蒙古沙鼠(M. unguiculatus)的两性。年轻人是指3-12个月的年龄,而沙鼠被认为是36个月及以上的年龄。如果没有另行说明,可以制备缓冲液和溶液并在冰箱中储存长达数月(4-8°C)。使用前,确保缓冲液和溶液未沉淀。 1. 固定和器官采集 <…

Representative Results

耳蜗要么在心血管灌注后用整只动物的固定剂收获,要么在安乐死动物并浸泡固定后迅速解剖。使用后一种方法,IHC在解剖过程中保持在原位,而在灌注不成功且因此组织固定不足的情况下,感觉上皮经常被破坏。请注意,作者遇到的情况是,经心灌注后耳蜗固定不足,而大脑固定仍然足够。通过打开进入耳蜗顶点和基底的孔,并通过浸入4%PFA浸入耳蜗2天来固定耳蜗,仍然可以保存来自下灌注的?…

Discussion

使用该协议中概述的方法,可以从年轻成人和老年沙鼠的耳蜗中免疫标记IHC和突触结构,通过突触前和突触后元素的共定位来识别假定的功能突触,将它们分配给单个IHC,并量化它们的数量,体积和位置。这种方法中使用的抗体还标记外毛细胞(OHCs; myoVIIa)及其突触前带。此外,IHC和OHC免疫标记的可行替代方案是针对乙铁林的抗体,OHCs看起来比IHC暗淡得多。

灌注可以使用两…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者感谢Lichun Zhang帮助建立了该方法和荧光显微镜服务部门,卡尔·冯·奥西茨基大学奥尔登堡分校,用于使用成像设施。这项研究由德国卓越战略-EXC 2177/1下的德国研究基金会(DFG)资助。

Materials

Albumin Fraction V biotin-free Carl Roth 0163.2
anti-CtBP2 (IgG1 monoclonal mouse) BD Biosciences, Eysins 612044
anti-GluA2 (IgG2a monoclonal mouse) Millipore MAB39
anti-mouse (IgG1)-AF 488 Molecular Probes Inc. A21121
anti-MyosinVIIa (IgG polyclonal rabbit) Proteus Biosciences 25e6790
Blade Holder & Breaker – Flat Jaws Fine Science Tools 10052-11
Bonn Artery Scissors – Ball Tip Fine Science Tools 14086-09
Coverslip thickness 1.5H, 24 x 60 mm Carl Roth LH26.1
Disposable Surgical Blade Henry Schein 0473
donkey anti-rabbit (IgG)-AF647 Life Technologies-Molecular Probes A-31573
Dumont #5 – Fine Forceps Fine Science Tools 11254-20
Dumont #5SF Forceps Fine Science Tools 11252-00
Ethanol, absolute 99.8% Fisher Scientific 12468750
Ethylenediaminetetraacetic acid Carl Roth 8040.2
Excel Microsoft Corporation
Feather Double Edge Blade PLANO 112-9
G19 Cannula Henry Schein 9003633
goat anti-mouse (IgG2a)-AF568 Invitrogen A-21134
Heparin Ratiopharm N68542.04
Huygens Essentials Scientific Volume Imaging
ImageJ Fiji
Immersol, Immersion oil 518F Carl Zeiss 10539438
Intrafix Primeline Classic, 150 cm (mit Datamatrix Code auf der Sterilverpackung) Braun 4062957E
ISM596D Ismatec peristaltic pump
KL 1600 LED Schott 150.600 light source for stereomicroscope
Leica Application suite X Leica Microsystem CMS GmbH
Leica TCS SP8 system Leica Microsystem CMS GmbH
Matlab The Mathworks Inc.
Mayo Scissors Tungston Carbide ToghCut Fine Science Tools 14512-17
Mini-100 Orbital-Genie Scientific Industries SI-M100 for use in cold environment
Narcoren (pentobarbital) Boehringer Ingelheim Vetmedica GmbH
Nikon Eclipse Ni-Ei Nikon
NIS Elements Nikon Europe B.V.
Paraformaldehyde Carl Roth 0335.3
Petri dish without vents Avantor VWR 390-1375
Phosphate-buffered saline:
Disodium phosphate AppliChem A1046
Monopotassium phosphate Carl Roth 3904.1
Potassium chloride Carl Roth 6781.1
Sodium chloride Sigma Aldrich 31434-M
Screw Cap Containers Sarstedt 75.562.300
Sodium azide Carl Roth K305.1
Student Adson Forceps Fine Science Tools 91106-12
Student Halsted-Mosquito Hemostat Fine Science Tools 91308-12
Superfrost Adhesion Microscope Slides Epredia J1800AMNZ
Triton  X Carl Roth 3051.2
TrueBlack Lipofuscin Autofluorescence Quencher Biotium 23007
Vannas Spring Scissors, 3mm Fine Science Tools 15000-00
Vectashield Antifade Mounting Medium Vector Laboratories H-1000
Vibrax VXR basic IKA 0002819000
VX 7 Dish attachment for Vibrax VXR basic IKA 953300
Wild TYP 355110 (Stereomicroscope) Wild Heerbrugg not available anymore

Referenzen

  1. Liberman, M. C. Noise-induced and age-related hearing loss: new perspectives and potential therapies [version 1; peer review. F1000Research. 6 (927), (2017).
  2. Heeringa, A. N., Koeppl, C. The aging cochlea: Towards unraveling the functional contributions of strial dysfunction and synaptopathy. Hearing. 376, 111-124 (2019).
  3. Liberman, L. D., Wang, H., Liberman, M. C. Opposing gradients of ribbon size and AMPA receptor expression underlie sensitivity differences among cochlear-nerve/hair-cell synapses. The Journal of Neuroscience. 31 (3), 801-808 (2011).
  4. Khimich, D., et al. Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature. 434 (7035), 889-894 (2005).
  5. Pangršič, T., et al. Hearing requires otoferlin-dependent efficient replenishment of synaptic vesicles in hair cells. Nature Neuroscience. 13 (7), 869-876 (2010).
  6. Meyer, A. C., et al. Tuning of synapse number, structure and function in the cochlea. Nature Neuroscience. 12 (4), 444-453 (2009).
  7. Zhang, L., Engler, S., Koepcke, L., Steenken, F., Koeppl, C. Concurrent gradients of ribbon volume and AMPA-receptor patch volume in cochlear afferent synapses on gerbil inner hair cells. Hearing Research. 364, 81-89 (2018).
  8. Steenken, F., et al. Age-related decline in cochlear ribbon synapses and its relation to different metrics of auditory-nerve activity. Neurobiology of Aging. 108, 133-145 (2021).
  9. Merchan-Perez, A., Liberman, M. C. Ultrastructural differences among afferent synapses on cochlear hair cells: Correlations with spontaneous discharge rate. Journal of Comparative Neurology. 371 (2), 208-221 (1996).
  10. Furman, A. C., Kujawa, S. G., Liberman, M. C. Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. Journal of Neurophysiology. 110 (3), 577-586 (2013).
  11. Gilels, F., Paquette, S. T., Zhang, J., Rahman, I., White, P. M. Mutation of Foxo3 causes adult onset auditory neuropathy and alters cochlear synapse architecture in mice. The Journal of Neuroscience. 33 (47), 18409-18424 (2013).
  12. Yin, Y., Liberman, L. D., Maison, S. F., Liberman, M. C. Olivocochlear innervation maintains the normal modiolar-pillar and habenular-cuticular gradients in cochlear synaptic morphology. Journal of the Association for Research in Otolaryngology. 15 (4), 571-583 (2014).
  13. Paquette, S. T., Gilels, F., White, P. M. Noise exposure modulates cochlear inner hair cell ribbon volumes, correlating with changes in auditory measures in the FVB/nJ mouse. Scientific Reports. 6 (1), 25056 (2016).
  14. Reijntjes, D. O. J., Köppl, C., Pyott, S. J. Volume gradients in inner hair cell-auditory nerve fiber pre- and postsynaptic proteins differ across mouse strains. Hearing Research. 390, 107933 (2020).
  15. Liberman, M. C. Single-neuron labeling in the cat auditory nerve. Science. 216 (4551), 1239-1241 (1982).
  16. Bourien, J., et al. Contribution of auditory nerve fibers to compound action potential of the auditory nerve. Journal of Neurophysiology. 112 (5), 1025-1039 (2014).
  17. Sergeyenko, Y., Lall, K., Liberman, M. C., Kujawa, S. G. Age-related cochlear synaptopathy: An early-onset contributor to auditory functional decline. The Journal of Neuroscience. 33 (34), 13686-13694 (2013).
  18. Viana, L. M., et al. Cochlear neuropathy in human presbycusis: Confocal analysis of hidden hearing loss in post-mortem tissue. Hearing Research. 327, 78-88 (2015).
  19. Batrel, C., et al. Mass potentials recorded at the round window enable the detection of low spontaneous rate fibers in gerbil auditory nerve. PLoS ONE. 12 (1), 0169890 (2017).
  20. Jeffers, P. W. C., Bourien, J., Diuba, A., Puel, J. -. L., Kujawa, S. G. Noise-induced hearing loss in gerbil: Round window assays of synapse loss. Frontiers in Cellular Neuroscience. 15, 699978 (2021).
  21. Gleich, O., Semmler, P., Strutz, J. Behavioral auditory thresholds and loss of ribbon synapses at inner hair cells in aged gerbils. Experimental Gerontology. 84, 61-70 (2016).
  22. Cheal, M. The gerbil: A unique model for research on aging. Experimental Aging Research. 12 (1), 3-21 (1986).
  23. Gates, G. A., Mills, J. H. Presbycusis. The Lancet. 366 (9491), 1111-1120 (2005).
  24. Ryan, A. F. Hearing sensitivity of the gerbil, Meriones unguiculatis. The Journal of the Acoustical Society of America. 59 (5), 1222-1226 (1976).
  25. Müller, M. The cochlear place-frequency map of the adult and developing gerbil. Hearing Research. 94 (1-2), 148-156 (1996).
  26. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nature Methods. 9 (7), 676-682 (2012).
  27. Reijntjes, D. O. J., Breitzler, J. L., Persic, D., Pyott, S. J. Preparation of the intact rodent organ of Corti for RNAscope and immunolabeling, confocal microscopy, and quantitative analysis. STAR Protocols. 2 (2), 100544 (2021).
  28. Hickman, T. T., Hashimoto, K., Liberman, L. D., Liberman, M. C. Synaptic migration and reorganization after noise exposure suggests regeneration in a mature mammalian cochlea. Scientific Reports. 10 (1), 19945 (2020).
  29. Gray, D. A., Woulfe, J. Lipofuscin and aging: a matter of toxic waste. Science of Aging Knowledge Environment: SAGE KE. 2005 (5), 1 (2005).
  30. Li, H. -. S., Hultcrantz, M. Age-related degeneration of the organ of Corti in two genotypes of mice. ORL; Journal for Oto-rhino-laryngology and Its Related Specialties. 56 (2), 61-67 (1994).
  31. Kobrina, A., et al. Linking anatomical and physiological markers of auditory system degeneration with behavioral hearing assessments in a mouse (Mus musculus) model of age-related hearing loss. Neurobiology of Aging. 96, 87-103 (2020).
  32. Moreno-García, A., Kun, A., Calero, O., Medina, M., Calero, M. An overview of the role of lipofuscin in age-related neurodegeneration. Frontiers in Neuroscience. 12, 464 (2018).
  33. Jensen, T., Holten-Rossing, H., Svendsen, I., Jacobsen, C., Vainer, B. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy. Journal of Pathology Informatics. 7, 15 (2016).
  34. Kalluri, R., Monges-Hernandez, M. Spatial gradients in the size of inner hair cell ribbons emerge before the onset of hearing in rats. Journal of the Association for Research in Otolaryngology. 18 (3), 399-413 (2017).
  35. Wu, P. Z., Liberman, L. D., Bennett, K., de Gruttola, V., O’Malley, J. T., Liberman, M. C. Primary neural degeneration in the human cochlea: Evidence for hidden hearing loss in the aging ear. Neurowissenschaften. 407, 8-20 (2019).
check_url/de/63874?article_type=t

Play Video

Diesen Artikel zitieren
Steenken, F., Bovee, S., Köppl, C. Immunolabeling and Counting Ribbon Synapses in Young Adult and Aged Gerbil Cochleae. J. Vis. Exp. (182), e63874, doi:10.3791/63874 (2022).

View Video