Summary

一种通过牛磺胆酸钠共转运多肽作为治疗靶点检查乙型肝炎病毒进入的感受态肝细胞模型

Published: May 10, 2022
doi:

Summary

我们提出了一种针对病毒进入前和进入生命周期阶段的抗乙型肝炎病毒(HBV)化合物的协议,使用等温滴定量热法测量与宿主牛磺胆酸钠共转运多肽的结合亲和力(KD)。通过抑制病毒生命周期标志物(cccDNA形成,转录和病毒组装)来确定抗病毒功效。

Abstract

乙型肝炎病毒(HBV)感染被认为是肝细胞癌的关键危险因素。目前的治疗只能减轻病毒载量,但不能完全缓解。HBV感染的有效肝细胞模型将提供真实的病毒生命周期,这对于筛选治疗剂至关重要。大多数可用的抗HBV药物针对病毒进入后的生命周期阶段,而不是病毒进入之前。该协议详细说明了能够筛选针对病毒进入前和病毒进入后生命周期阶段的治疗剂的感受态肝细胞模型的生成。这包括靶向牛磺胆酸钠共转运多肽(NTCP)结合,cccDNA形成,转录和基于imHC或HepaRG作为宿主细胞的病毒组装。在这里,HBV进入抑制测定使用姜黄素通过NTCP抑制HBV结合和转运功能。使用等温滴定量热法(ITC)评估抑制剂与NTCP的结合亲和力(KD),ITC是一种基于热力学参数的HBV药物筛选通用工具。

Introduction

乙型肝炎病毒(HBV)感染在世界范围内被认为是一种危及生命的疾病。慢性HBV感染有肝硬化和肝细胞癌的风险1。目前的抗HBV治疗主要集中在使用核苷(酸)类似物(NAs)和干扰素-α(IFN-α进入病毒后23。HBV进入抑制剂Myrcludex B的发现确定了抗HBV药物的新靶点4。与仅靶向病毒复制的抑制剂相比,慢性HBV中进入抑制剂和NAs的组合显着降低了病毒载量56。然而,用于筛选HBV进入抑制剂的经典肝细胞模型受到低病毒受体水平(牛磺胆酸钠共转运多肽,NTCP)的限制。hNTCP在肝癌细胞(即HepG2和Huh7)中的过表达可提高HBV感染性78。然而,这些细胞系表达低水平的I期和II期药物代谢酶,并表现出遗传不稳定性9。肝细胞模型可以帮助靶向候选抗HBV化合物的不同机制,如病毒前进入,NTCP结合和病毒进入,将加快有效联合方案的鉴定和开发。姜黄素抗HBV活性的研究阐明了抑制病毒进入作为病毒进入后中断的新机制。该协议详细介绍了用于筛选抗HBV进入分子的宿主模型10

该方法的目标是探索用于抑制病毒进入的候选抗HBV化合物,特别是阻断NTCP结合和转运。由于NTCP表达是HBV进入和感染的关键因素,我们优化了肝细胞成熟方案,以最大限度地提高NTCP水平11。此外,该方案可以将对HBV进入的抑制作用区分为抑制HBV附着与抑制内化。牛磺胆酸(TCA)摄取测定也使用基于ELISA的方法而不是放射性同位素进行修饰,以表示NTCP转运1213。受体和配体的相互作用通过它们的3D结构1415得到证实。NTCP功能的抑制可以通过测量TCA摄取活性来评估16。然而,该技术并未提供NTCP与候选抑制剂结合的直接证据。因此,可以使用各种技术来研究结合,例如表面等离子体共振17,ELISA,基于荧光的热移位测定(FTSA)18FRET19,AlphaScreen和各种其他方法20。在这些技术中,ITC是结合分析的目标标准,因为它几乎可以观察每个反应中的吸热或发射21。使用ITC直接评估NTCP和候选化合物的结合亲和力(KD);这些亲和力值比使用 计算机 预测模型22获得的值更精确。

该协议涵盖了肝细胞成熟,HBV感染和HBV进入抑制剂筛查的技术。简而言之,基于imHC和HepaRG细胞系开发了肝细胞模型。培养的细胞在2周内分化为成熟的肝细胞。使用实时荧光定量PCR、蛋白质印迹和流式细胞术检测NTCP水平的上调11。乙型肝炎病毒粒子(HBVcc)是从HepG2.2.15中产生和收集的。分化的imHC或HepaRG(d-imHC,d-HepaRG)在接种HBV病毒粒子前2小时用抗HBV候选物预防性处理。实验的预期结果是鉴定降低细胞HBV和感染性的药物。使用TCA摄取测定法评估抗NTCP活性。NTCP活性可以被特异性结合NTCP的代理抑制。采用ITC技术研究了可以预测抑制剂及其靶蛋白的交互式结合的可行性,通过生物分子复合物2324的非共价相互作用确定配体对受体的结合亲和力(KD)。例如,K D ≥ 1 × 103 mM代表弱结合,K D ≥ 1 × 10 6 μM代表中等结合,K D ≤ 1 ×10 9 nM代表强结合。ΔG与结合相互作用直接相关。特别是,负ΔG的反应是用力反应,表明结合是一个自发过程。负ΔH的反应表明结合过程取决于氢键和范德华力。TCA摄取和ITC数据都可用于筛查抗HBV进入剂。这些方案的结果不仅可以为抗HBV筛查提供基础,还可以通过结合亲和力和转运功能评估与NTCP的相互作用。本文描述了宿主细胞的制备和表征、实验设计以及抗HBV条目以及NTCP结合亲和力的评估。

Protocol

注意:以下程序必须在II类生物危害流罩或层流罩中执行。乙肝病毒的处理得到了IRB的道德批准(MURA2020/1545)。有关本协议中使用的所有溶液、试剂、设备和细胞系的详细信息,请参阅 材料表 。 1. 制备宿主细胞(成熟肝细胞) 培养肝细胞(3.75 × 105 细胞 HepaRG 或 imHC)并保持在 75 cm2 培养瓶中,培养瓶中装有 10 mL DMEM/F12 培养?…

Representative Results

观察到肝脏成熟特征,包括双核细胞和多边形形态(图1),特别是在imHC的分化阶段(图1A)。在d-HepaRG和d-imHC中分别以7倍和40倍测量NTCP表达的大幅增加(图1B)。高度糖基化的NTCP形式,假设赋予HBV进入的敏感性,在d-imHC中检测到的比在d-HepaRG中检测到的更多(图1C)。分化的imHC含有比未分化细胞高65.9%的NTCP?…

Discussion

HBV感染通过与肝细胞25上的硫酸乙酰肝素蛋白聚糖(HSPG)的低亲和力结合而引发,然后与NTCP结合,随后通过内吞作用26内化。由于NTCP是HBV进入的关键受体,因此靶向HBV进入可以在临床上转化为减少 新发 感染,母婴传播(MTCT)和肝移植后的复发。阻断病毒进入将是慢性HBV感染的可行替代疗法。

这里总结了上述协议中的一些关键步骤?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

该研究项目由玛希隆大学和泰国科学研究与创新(TSRI)分别授予A. Wongkajornsilp和K. Sa-ngiamsuntorn。这项工作由国家高等教育科学研究和创新政策委员会办公室通过竞争力项目管理单位(批准号C10F630093)提供财政支持。A. Wongkajornsilp是玛希隆大学医学院Siriraj医院Chalermprakiat赠款的获得者。作者要感谢Sawinee Seemakan小姐(玛希隆大学理学院药物发现优秀中心)对ITC技术的帮助。

Materials

Cell lines
HepaRG Cells, Cryopreserved Thermo Fisher Scientific HPRGC10
Hep-G2/2.2.15 Human Hepatoblastoma Cell Line Merck SCC249
Reagents
4% Paraformadehyde Phosphate Buffer Solution FUJIFLIM Wako chemical 163-20145
BD Perm/Wash buffer BD Biosciences 554723 Perm/Wash buffer
Cyclosporin A abcam 59865-13-3
EDTA Invitrogen 15575-038 8 mM
G 418 disulfate salt Merck 108321-42-2
Halt Protease Inhibitor Cocktail  EDTA-free (100x) Thermo Scientific 78425
HEPES Merck 7365-45-9
illustraTM RNAspin Mini RNA isolation kits GE Healthcare 25-0500-71
illustra RNAspin Mini RNA Isolation Kit GE Healthcare 25-0500-71
ImProm-II Reverse Transcription System Promega A3800
KAPA SYBR FAST qPCR Kit Kapa Biosystems KK4600
Lenti-X Concentrator Takara bio PT4421-2 concentrator
Luminata crescendo Western HRP substrate Merck WBLUR0100
Master Mix (2x) Universal Kapa Biosystems KK4600
Nucleospin DNA extraction kit macherey-nagel 1806/003
Phosphate buffered saline Merck P3813
Polyethylene glycol 8000 Merck 25322-68-3
ProLong Gold Antifade Mountant Thermo scientific P36930
Recombinant NTCP Cloud-Clone RPE421Hu02
RIPA Lysis Buffer (10x) Merck 20-188
TCA Sigma 345909-26-4
TCA Elisa kit Mybiosource MB2033685
Triton X-100 Merck 9036-19-5
Trypsin-EDTA Gibco 25200072 Dilute to 0.125%
Antibodies
    Anti-NTCP1 antibody Abcam ab131084 1:100 dilution
    Anti-GAPDH antibody Thermo Fisher Scientific AM4300 1:200,000 dilution
   HRP-conjugated goat anti-rabbit antibody Abcam ab205718 1:10,000 dilution
   HRP goat anti-mouse secondary antibody Abcam ab97023 1:10,000 dilution
   Goat anti-Rabbit IgG Secondary Antibody, Alexa Fluor 488 Invitrogen A-11008 1:500 dilution
Reagent composition
1° Antibody dilution buffer
     1x TBST
     3% BSA Sigma A7906-100G Working concentration: 3%
     Sodium azide Sigma 199931 Working concentration: 0.05%
Hepatocyte Growth Medium
      DME/F12 Gibco 12400-024
      10% FBS Sigma Aldrich F7524
      1% Pen/Strep HyClon SV30010
      1% GlutaMAX Gibco 35050-061
Hepatic maturation medium
      Williams’ E medium Sigma Aldrich W4125-1L
      10% FBS Sigma Aldrich F7524
      1% Pen/Strep HyClon SV30010
      1% GlutaMAX Gibco 35050-061
      5 µg/mL  Insulin Sigma Aldrich 91077C-100MG
      50 µM hydrocotisone Sigma Aldrich H0888-1g
     2% DMSO PanReac AppliChem A3672-250ml
IF Blocking solution
     1x PBS Gibco 21300-058
     3% BSA Sigma A7906-100G Working concentration: 3%
     0.2% Triton X-100 Sigma T8787 Working concentration: 0.2%
RIPA Lysis Buffer Solution Merck 20-188 Final concentration: 1X
     Protease Inhibitor Cocktail Thermo Scientific 78425 Final concentration: 1X
       Na3VO4 Final concentration: 1 mM
       PMSF Final concentration: 1 mM
       NaF Final concentration: 10 mM
Western blot reagent
     10x Tris-buffered saline (TBS) Bio-Rad 170-6435 Final concentration: 1X
     Tween 20 Merck 9005-64-5
     1x TBST 0.1% Tween 20
     1x PBS Gibco 21300-058
     Pierce BCA Protein Assay Kit Thermo Fisher Scientific A53225
     Polyacrylamide gel Bio-Rad 161-0183
     Ammonium Persulfate (APS) Bio-Rad 161-0700 Final concentration: 0.05%
    TEMED Bio-Rad 161-0800 Stacker gel: 0.1%, Resolver gel: 0.05%
    2x Laemmli Sample Buffer Bio-Rad 161-0737 Final concentration: 1X
    Precision Plus Protein Dual Color Standards Bio-Rad 161-0374
WB Blocking solution/ 2° Antibody dilution buffer
     1x TBST
     5% Skim milk (nonfat dry milk) Bio-Rad 170-6404 Working concentration: 5%
1x Running buffer 1 L
      10x Tris-buffered saline (TBS) Bio-Rad 170-6435 Final concentration: 1X
     Glycine Sigma G8898 14.4 g
     SDS Merck 7910 Working concentration: 0.1%
Blot transfer buffer 500 mL
      10x Tris-buffered saline (TBS) Bio-Rad 170-6435 Final concentration: 1X
     Glycine Sigma G8898 7.2 g
     Methanol Merck 106009 100 mL
Mild stripping solution 1 L Adjust pH to 2.2
    Glycine Sigma G8898 15 g
     SDS Merck 7910 1 g
     Tween 20 Merck 9005-64-5 10 mL
Equipments
15 mL centrifuge tube Corning 430052
50 mL centrifuge tube Corning 430291
Airstream Class II Esco 2010621 Biological safety cabinet
CelCulture CO2 Incubator Esco 2170002 Humidified tissue culture incubator
CFX96 Touch Real-Time PCR Detector Bio-Rad 1855196
FACSVerse Flow Cytometer BD Biosciences 651154
Graduated pipettes (10 mL) Jet Biofil GSP010010
Graduated pipettes (5 mL) Jet Biofil GSP010005
MicroCal PEAQ-ITC Malvern Isothermal titration calorimeters
Mini PROTEAN Tetra Cell Bio-Rad 1658004 Electrophoresis chamber
Mini Trans-blot absorbent filter paper Bio-Rad 1703932
Omega Lum G Imaging System Aplegen 8418-10-0005
Pipette controller Eppendorf 4430000.018 Easypet 3
PowerPac HC Bio-Rad 1645052 Power supply
PVDF membrane Merck IPVH00010
T-75 A91:D106flask Corning 431464U
Trans-Blot SD Semi-Dry Transfer Cell Bio-Rad 1703940 Semi-dry transfer cell
Ultrasonic processor (Vibra-Cell VCX 130) Sonics & Materials
Versati Tabletop Refrigerated Centrifuge Esco T1000R Centrifuge with swinging bucket rotar

Referenzen

  1. Levrero, M., Zucman-Rossi, J. Mechanisms of HBV-induced hepatocellular carcinoma. Journal of Hepatology. 64 (1), 84-101 (2016).
  2. Kim, K. -. H., Kim, N. D., Seong, B. -. L. Discovery and development of anti-HBV agents and their resistance. Molecules. 15 (9), 5878-5908 (2010).
  3. Shaw, T., Bowden, S., Locarnini, S. Chemotherapy for hepatitis B: New treatment options necessitate reappraisal of traditional endpoints. Gastroenterology. 123 (6), 2135-2140 (2002).
  4. Volz, T., et al. The entry inhibitor Myrcludex-B efficiently blocks intrahepatic virus spreading in humanized mice previously infected with hepatitis B virus. Journal of Hepatology. 58 (5), 861-867 (2013).
  5. Mak, L. -. Y., Seto, W. -. K., Yuen, M. -. F. Novel antivirals in clinical development for chronic hepatitis B infection. Viruses. 13 (6), 1169 (2021).
  6. Zuccaro, V., Asperges, E., Colaneri, M., Marvulli, L. N., Bruno, R. HBV and HDV: New Treatments on the Horizon. Journal of Clinical Medicine. 10 (18), 4054 (2021).
  7. Iwamoto, M., et al. Evaluation and identification of hepatitis B virus entry inhibitors using HepG2 cells overexpressing a membrane transporter NTCP. Biochemical and Biophysical Research Communications. 443 (3), 808-813 (2014).
  8. Tong, S., Li, J. Identification of NTCP as an HBV receptor: the beginning of the end or the end of the beginning. Gastroenterology. 146 (4), 902-905 (2014).
  9. Xuan, J., Chen, S., Ning, B., Tolleson, W. H., Guo, L. Development of HepG2-derived cells expressing cytochrome P450s for assessing metabolism-associated drug-induced liver toxicity. Chemico-Biological Interactions. 255, 63-73 (2016).
  10. Thongsri, P., et al. Curcumin inhibited hepatitis B viral entry through NTCP binding. Scientific Reports. 11 (1), 19125 (2021).
  11. Sa-Ngiamsuntorn, K., et al. An immortalized hepatocyte-like cell line (imHC) accommodated complete viral lifecycle, viral persistence form, cccDNA and eventual spreading of a clinically-isolated HBV. Viruses. 11 (10), 952 (2019).
  12. Watashi, K., et al. Cyclosporin A and its analogs inhibit hepatitis B virus entry into cultured hepatocytes through targeting a membrane transporter, sodium taurocholate cotransporting polypeptide (NTCP). Hepatology. 59 (5), 1726-1737 (2014).
  13. Kaneko, M., et al. A novel tricyclic polyketide, Vanitaracin A, specifically inhibits the entry of hepatitis B and D viruses by targeting sodium taurocholate cotransporting polypeptide. Journal of Virology. 89 (23), 11945-11953 (2015).
  14. Manta, B., Obal, G., Ricciardi, A., Pritsch, O., Denicola, A. Tools to evaluate the conformation of protein products. Biotechnology Journal. 6 (6), 731-741 (2011).
  15. Martinez Molina, D., Nordlund, P. The cellular thermal shift assay: a novel biophysical assay for in situ drug target engagement and mechanistic biomarker studies. Annual Review of Pharmacology and Toxicology. 56, 141-161 (2016).
  16. Appelman, M. D., Chakraborty, A., Protzer, U., McKeating, J. A., van de Graaf, S. F. J. N-Glycosylation of the Na+-taurocholate cotransporting polypeptide (NTCP) determines its trafficking and stability and is required for hepatitis B virus infection. PLoS One. 12 (1), 0170419 (2017).
  17. Tsukuda, S., et al. A new class of hepatitis B and D virus entry inhibitors, proanthocyanidin and its analogs, that directly act on the viral large surface proteins. Hepatology. 65 (4), 1104-1116 (2017).
  18. Klumpp, K., et al. High-resolution crystal structure of a hepatitis B virus replication inhibitor bound to the viral core protein. Proceedings of the National Academy of Sciences. 112 (49), 15196-15201 (2015).
  19. Donkers, J. M., Appelman, M. D., van de Graaf, S. F. J. Mechanistic insights into the inhibition of NTCP by myrcludex B. JHEP Reports. 1 (4), 278-285 (2019).
  20. Saso, W., et al. A new strategy to identify hepatitis B virus entry inhibitors by AlphaScreen technology targeting the envelope-receptor interaction. Biochemical and Biophysical Research Communications. 501 (2), 374-379 (2018).
  21. Baranauskiene, L., Kuo, T. C., Chen, W. Y., Matulis, D. Isothermal titration calorimetry for characterization of recombinant proteins. Current Opinion in Biotechnology. 55, 9-15 (2019).
  22. Zhang, J., et al. Structure-based virtual screening protocol for in silico identification of potential thyroid disrupting chemicals targeting transthyretin. Environmental Science & Technology. 50 (21), 11984-11993 (2016).
  23. Duff, J. M. R., Grubbs, J., Howell, E. E. Isothermal titration calorimetry for measuring macromolecule-ligand affinity. Journal of Visualized Experiments: JoVE. (55), e2796 (2011).
  24. Du, X., et al. Insights into protein-ligand interactions: mechanisms, models, and methods. International Journal of Molecular Sciences. 17 (2), 144 (2016).
  25. Sureau, C., Salisse, J. A conformational heparan sulfate binding site essential to infectivity overlaps with the conserved hepatitis B virus A-determinant. Hepatology. 57 (3), 985-994 (2013).
  26. Herrscher, C., et al. Hepatitis B virus entry into HepG2-NTCP cells requires clathrin-mediated endocytosis. Cellular Microbiology. 22 (8), 13205 (2020).
  27. Gripon, P., et al. Infection of a human hepatoma cell line by hepatitis B virus. Proceedings of the National Academy of Sciences. 99 (24), 15655-15660 (2002).
  28. Mayati, A., et al. Functional polarization of human hepatoma HepaRG cells in response to forskolin. Scientific Reports. 8 (1), 16115 (2018).
  29. Sells, M. A., Chen, M. L., Acs, G. Production of hepatitis B virus particles in Hep G2 cells transfected with cloned hepatitis B virus DNA. Proceedings of the National Academy of Sciences of the United States of America. 84 (4), 1005-1009 (1987).
  30. Freyer, M. W., Lewis, E. A. Isothermal titration calorimetry: experimental design, data analysis, and probing macromolecule/ligand binding and kinetic interactions. Methods in Cell Biology. 84, 79-113 (2008).
  31. Srivastava, V. K., Yadav, R., Misra, G. . Data Processing Handbook for Complex Biological Data Sources. , 125-137 (2019).
  32. Seeger, C., Mason, W. S. Sodium-dependent taurocholic cotransporting polypeptide: a candidate receptor for human hepatitis B virus. Gut. 62 (8), 1093-1095 (2013).
  33. Seeger, C., Sohn, J. A. Targeting hepatitis B virus with CRISPR/Cas9. Molecular Therapy – Nucleic Acids. 3, 216 (2014).
  34. Ni, Y., et al. Hepatitis B and D viruses exploit sodium taurocholate co-transporting polypeptide for species-specific entry into hepatocytes. Gastroenterology. 146 (4), 1070-1083 (2014).
  35. Chai, N., et al. Properties of subviral particles of hepatitis B virus. Journal of Virology. 82 (16), 7812-7817 (2008).
  36. Moore, A., Chothe, P. P., Tsao, H., Hariparsad, N. Evaluation of the interplay between uptake transport and CYP3A4 induction in micropatterned cocultured hepatocytes. Drug Metabolism and Disposition. 44 (12), 1910-1919 (2016).
  37. Parvez, M. K., et al. Plant-derived antiviral drugs as novel hepatitis B virus inhibitors: Cell culture and molecular docking study. Saudi Pharmaceutical Journal. 27 (3), 389-400 (2019).

Play Video

Diesen Artikel zitieren
Sa-ngiamsuntorn, K., Thongsri, P., Pewkliang, Y., Borwornpinyo, S., Wongkajornsilp, A. A Competent Hepatocyte Model Examining Hepatitis B Virus Entry through Sodium Taurocholate Cotransporting Polypeptide as a Therapeutic Target. J. Vis. Exp. (183), e63761, doi:10.3791/63761 (2022).

View Video