La microscopia a fluorescenza intravitale può essere utilizzata per studiare le interazioni leucocita-endoteliali e la perfusione capillare in tempo reale. Questo protocollo descrive i metodi per visualizzare e quantificare questi parametri nel microcircolo polmonare utilizzando un sistema di imaging polmonare stabilizzato nel vuoto.
L’imaging intravitale delle interazioni leucocita-endoteliali offre preziose informazioni sulla malattia immuno-mediata negli animali vivi. Lo studio della lesione polmonare acuta (ALI) / sindrome da distress respiratorio acuto (ARDS) e di altre patologie respiratorie in vivo è difficile a causa della limitata accessibilità e degli artefatti di movimento intrinseci dei polmoni. Tuttavia, sono stati sviluppati vari approcci per superare queste sfide. Questo protocollo descrive un metodo per la microscopia a fluorescenza intravitale per studiare in tempo reale le interazioni leucocita-endoteliale nella microcircolazione polmonare in un modello sperimentale di ALI. Un sistema di imaging polmonare in vivo e una piattaforma di microscopia intravitale stampata in 3D vengono utilizzati per proteggere il topo anestetizzato e stabilizzare il polmone riducendo al minimo le lesioni polmonari confondenti. Dopo la preparazione, la microscopia a fluorescenza a campo largo viene utilizzata per studiare l’adesione dei leucociti, il rotolamento dei leucociti e la funzione capillare. Mentre il protocollo qui presentato si concentra sull’imaging in un modello acuto di malattia polmonare infiammatoria, può anche essere adattato per studiare altri processi patologici e fisiologici nel polmone.
La microscopia intravitale (IVM) è un utile strumento di imaging per visualizzare e studiare vari processi biofisici in vivo. Il polmone è molto difficile da fotografare in vivo a causa della sua posizione chiusa, della natura fragile del suo tessuto e degli artefatti di movimento indotti dalla respirazione e dal battito cardiaco 1,2. Sono state sviluppate varie configurazioni di microscopia intravitale (IVM) per l’imaging in tempo reale delle interazioni leucocita-endoteliali nella microcircolazione polmonare per superare queste sfide. Tali approcci si basano sull’esposizione chirurgica e sulla stabilizzazione del polmone per l’imaging.
Gli animali sono in genere preparati per l’IVM polmonare mediante procedure chirurgiche. In primo luogo, gli animali vengono intubati e ventilati, il che consente l’escissione chirurgica di una finestra toracica e successivi interventi per stabilizzare il polmone per l’imaging. Una tecnica prevede l’incollaggio del parenchima su un coverslip3 di vetro, una procedura che rischia un trauma fisico significativo al tessuto ripreso. Più avanzato è l’utilizzo di un sistema di vuoto per stabilizzare il polmone sotto una finestra di vetro4. Questa configurazione facilita l’aderenza sciolta della superficie polmonare al coverslip tramite un vuoto reversibile distribuito su una vasta area locale ed espande il polmone limitando comunque il movimento nelle dimensioni x, y e z4. Il vuoto viene applicato uniformemente attraverso un canale che circonda l’area di imaging della configurazione e tira il tessuto in una regione conica poco profonda di fronte al coverslip4 di grado di imaging. Attraverso questa finestra di visualizzazione, la microcircolazione polmonare può essere studiata utilizzando varie modalità di imaging ottico.
Lung IVM consente l’imaging quantitativo di una moltitudine di parametri microcircolatori. Questi includono misurazioni come la velocità e la lunghezza della traccia leucocitaria5, la velocità del flusso dei globuli rossi6 e l’ossigenazione7, le metastasi tumorali8, la distinzione delle sottopopolazioni di cellule immunitarie 9,10,11, la visualizzazione delle microparticelle12, la dinamica alveolare 13,14, la permeabilità vascolare15 e la funzione capillare 16 . L’attenzione qui è sul reclutamento dei leucociti e sulla funzione capillare. L’inizio del reclutamento dei leucociti nella microcircolazione polmonare comporta interazioni transitorie di rotolamento e interazioni adesive solide tra leucociti e cellule endoteliali, entrambe aumentate in condizioni infiammatorie16,17. Tipicamente, il rotolamento è quantificato dal numero di leucociti che passano una linea di riferimento definita dall’operatore, mentre l’adesione è quantificata dal numero di leucociti che sono immobili sull’endotelio16. La funzione capillare può anche essere influenzata negli stati infiammatori, spesso con conseguente diminuzione della perfusione. Ciò può essere attribuito a diversi fattori, tra cui una riduzione della deformabilità dei globuli rossi18 e l’espressione variegata di NO sintasi inducibile da parte delle cellule endoteliali con conseguente smistamento patologico19. Tipicamente, la lunghezza aggregata dei capillari perfusi per area viene misurata e riportata come densità capillare funzionale (FCD).
Studiare il reclutamento dei leucociti nei polmoni in tempo reale richiede l’etichettatura di bersagli biologici con coloranti fluorescenti o anticorpi marcati fluorescenti20. In alternativa, vari ceppi di topo transgenico come i topi lysozyme M-green fluorescent protein (LysM-GFP) possono essere utilizzati per visualizzare specifici sottoinsiemi di cellule immunitarie come i neutrofili21,22. I leucociti marcati fluorescenti possono quindi essere visualizzati utilizzando la microscopia a fluorescenza a campo largo, la microscopia confocale o la microscopia multifotonica. Queste tecniche raggiungono il contrasto utilizzando specifiche lunghezze d’onda di eccitazione e rilevando la fluorescenza emessa, bloccando contemporaneamente il rilevamento della lunghezza d’onda di eccitazione, evidenziando così l’oggetto etichettato.
La ricerca esistente riguardante la quantificazione del rotolamento dei leucociti, l’adesione e la densità capillare funzionale nel polmone murino si è basata principalmente sull’analisi video manuale. Ciò è reso possibile da software open source come Fiji 6,23, software proprietario come CapImage12 o sistemi di elaborazione delle immagini personalizzati24. Al contrario, varie piattaforme software proprietarie (ad esempio, NIS Element, Imaris, Volocity, MetaMorph) consentono la misurazione automatizzata di una vasta gamma di altri parametri fisiologici, tra cui molti di quelli precedentemente menzionati qui 5,6,7,8,9,10,11,12,13,15.
Importanti osservazioni sono state fatte per quanto riguarda la patologia della lesione polmonare acuta (ALI) e della sindrome da distress respiratorio acuto (ARDS) utilizzando IVM polmonare. L’ARDS è caratterizzata da una serie di processi fisiopatologici nel polmone, tra cui edema polmonare e danno alveolare causato da disfunzione dell’endotelio e della barriera epiteliale25. Utilizzando un modello murino, è stato scoperto che l’ALI indotta dalla sepsi è associata a significativi cambiamenti dannosi nel traffico di cellule immunitarie nell’ambiente polmonare26. I neutrofili reclutati nei capillari dei topi con ALI indotta da sepsi sono stati trovati per impedire la microcircolazione, aumentando così l’ipossia in ALI26. Inoltre, IVM è stato utilizzato per ottenere informazioni sul meccanismo di riparazione sottostante dopo l’inizio di ARDS27. Lung IVM è stato anche uno strumento prezioso per comprendere i cambiamenti fisiopatologici in varie malattie polmonari ostruttive. Ad esempio, la visualizzazione del trasporto di muco in malattie come la fibrosi cistica (FC) e la broncopneumopatia cronica ostruttiva (BPCO) ha facilitato lo studio di trattamenti nuovi ed esistenti per la clearance mucosa28. Il traffico di leucociti in queste condizioni è stato analizzato anche17.
Questo protocollo espande l’approccio inizialmente descritto da Lamm et al.29 per studiare le interazioni leucocita-endoteliali utilizzando la microscopia a fluorescenza convenzionale. Le procedure descritte impiegano un sistema di imaging polmonare in vivo , che include una base metallica di 16,5 cm x 12,7 cm, un micromanipolatore e una finestra di imaging a vuoto (Figura 1). Il sistema è montato in una piattaforma stampata 3D di 20 cm x 23,5 cm (file supplementare 1) per fornire un fissaggio sicuro per il tubo del ventilatore e la piastra riscaldante. Questo metodo offre immagini riproducibili e quantificabili della microcircolazione polmonare murina in vivo. Aspetti importanti della preparazione chirurgica e il corretto utilizzo di un sistema di imaging polmonare stabilizzato sotto vuoto sono spiegati in dettaglio. Infine, un modello sperimentale di ALI viene utilizzato per fornire immagini e analisi rappresentative del rotolamento alterato dei leucociti, dell’adesione dei leucociti e della perfusione capillare associata all’infiammazione. L’uso di questo protocollo dovrebbe facilitare ulteriori importanti indagini sui cambiamenti fisiopatologici nella microcircolazione polmonare durante gli stati di malattia acuta.
Il protocollo qui presentato richiede pratica e attenzione ad alcuni passaggi critici. In primo luogo, è importante preparare la finestra di imaging prima di iniziare l’intubazione e la chirurgia. Utilizzare una quantità minima di grasso sottovuoto per rivestire l’anello esterno della finestra di imaging, applicare il vetro di copertura e testare l’aspirazione con una goccia di acqua distillata. Prepararlo in anticipo impedirà al polmone esposto di asciugarsi durante l’installazione, altrimenti. Mentre è possibile la…
The authors have nothing to disclose.
Gli autori desiderano ringraziare la dott.ssa Pina Colarusso, che ha fornito una significativa esperienza nella redazione e revisione di questo manoscritto.
1 mL BD Luer Slip Tip Syringe sterile, single use | Becton, Dickinson and Company | 309659 | 1 mL syringe |
ADSON Dressing Forceps, Tip width 0.6 mm, teeth length 11.5 mm, 12 cm | RWD Life Science Co. | F12002-12 | Blunt forceps |
Albumin-Fluorescein Isothiocyanate | Sigma-Aldrich | A9771-1G | FITC-albumin |
Alcohol Swab Isopropyl Alcohol 70% v/v | Canadian Custom Packaging Company | 80002455 | Alcohol wipe |
AVDC110 Advanced Digital Video Converter | Canopus | 00631069602029 | Digital video converter |
B/W – CCD – Camera | Horn Imaging | BC-71 | Camera |
Bovie Deluxe High Temperature Cautery Kit | Fine Science Tools | 18010-00 | Cauterizer |
C57BL/6 Mice | Charles River Laboratories International | C57BL/6NCrl | C57BL/6 Mice |
Cotton Tipped Applicators | Puritan | 806-WC | Cotton applicator |
CS-8R 8mm Round Glass Coverslip | Warner Instruments | 64-0701 | Glass coverslip |
Digital Pressure Gauge | ITM Instruments Inc. | DG2551L0NAM02L0IM&V | Digital Pressure Gauge |
Dr Mom Slimline Stainless LED Otoscope | Dr. Mom Otoscopes | 1001 | Otoscope |
Ethyl Alchohol 95% Vol | Commercial Alcohols | P016EA95 | 95% ethanol |
Fine Scissors – Martensitic Stainless Steel | Fine Science Tools | 14094-11 | Scissors |
Fisherbrand Colored Labeling Tape | Fisher Scientific | 1590110 | Labeling tape |
Gast DOA-P704-AA High-Capacity Vacuum Pump | Cole-Parmer Canada Company | ZA-07061-40 | Vacuum pump |
Hartman Hemostats | Fine Science Tools | 13003-10 | Hemostatic forceps |
High Vacuum Grease | Dow Corning | DC976VF | Vacuum grease |
Isoflurane USP | Fresenius Kabi | CP0406V2 | Isoflurane |
LIDOcaine HCl Injection 1% 50 mg/5 mL | Teligent Canada | 0121AD01 | Lidocaine HCl 1% |
Lung SurgiBoard | Luxidea, Inc. | IMCH-0001 | Designed for intravital microscopy of the lung |
Mineral Oil | Teva Canada | 00485802 | Mineral oil |
Mouse Endotracheal Intubation Kit | Kent Scientific Corporation | ETI-MSE | Intubation stand, anesthesia mask, 20 G endotracheal cannula, fibre optic cable |
MST49 Fluorescence Microscope | Leica Microsystems | 10 450 022 | Fluorescence Microscope |
N Plan L 20x/0.40 Long Working Distance Microscope Objective | Leica Microsystems | 566035 | 20x objective |
Non-Woven Sponges 2" x 2" | AMD-Ritmed | A2101-CH | Gauze |
Optixcare Eye Lube Plus | Aventix | 5914322 | Tear gel |
Original Prusa i3 MK3S+ 3D Printer | Prusa Research | PRI-MK3S-KIT-ORG-PEI | 3D printer |
Oxygen, Compressed | Linde Canada Inc. | Oxygen | |
PrecisionGlide Needle 30 G x 1/2 (0.3 mm x 13 mm) | Becton, Dickinson and Company | 305106 | 30 G needle |
Pyrex 5340-2L 5340 Filtering Flasks, 2000 mL | Cole-Parmer Canada Company | 5340-2L | Vacuum flask |
Rhodamine 6 G | Sigma-Aldrich | 252433 | Rhodamine 6G |
Secure Soft Cloth Medical Tape – 3" | Primed | PM5-630709 | Cloth tape |
Silastic Medical Grade Tubing .040 in. ID x .085 in. OD | Dow Corning | 602-205 | 1.0 mm I.D. polyethylene tubing |
Somnosuite Low-Flow Anesthesia System | Kent Scientific Corporation | SS-01, SS-04-module | Small rodent ventilator, Low-flow anesthesia system, Heating pad, Rectal temperature probe, Pulse oximeter |
Tissue Forceps, 12.5cm long, Curved, 1 x 2 Teeth | World Precision Instruments | 501216 | Toothed forceps |
Transpore Medical Tape, 1527-1, 1 in x 10 yd (2.5 cm x 9.1 m) | 3M | 7000002795 | Medical tape |
Tubing,Clear,3/8 in Inside Dia. | Grainger Canada | USSZUSA-HT3314 | 1.0 cm I.D. polyethylene tubing |
Whatman 6720-5002 50 mm In-Line Filters, PTFE, 0.2 µm | Cole-Parmer Canada Company | 6720-5002 | Inline 0.2µm filter |