Summary

细胞外葡萄糖消耗作为细胞和组织离体葡萄糖摄取的间接测量

Published: April 06, 2022
doi:

Summary

荧光标记的葡萄糖的细胞外消耗与葡萄糖摄取相关,可用于切除器官和细胞培养物中葡萄糖摄取的高通量筛选。

Abstract

糖尿病的持续全球流行增加了对识别影响葡萄糖摄取的环境,营养,内分泌,遗传和表观遗传因素的需求。细胞内荧光的测量是一种广泛使用的方法,用于在 体外测试细胞中荧光标记的葡萄糖(FD-葡萄糖)的摄取,或用于 在体内对消耗葡萄糖的组织进行成像。该测定在选定的时间点评估葡萄糖摄取。细胞内分析假设FD-葡萄糖的代谢慢于内源性葡萄糖的代谢,内源性葡萄糖参与分解代谢和合成代谢反应和信号传导。然而,动态葡萄糖代谢也会改变摄取机制,这需要对不同因素的葡萄糖摄取进行动力学测量。本文介绍了一种测量细胞外FD-葡萄糖消耗的方法,并验证了其与细胞和组织 离体细胞中细胞内FD-葡萄糖摄取的相关性。细胞外葡萄糖消耗可能潜在地适用于高通量动力学和剂量依赖性研究,以及鉴定具有血糖活性的化合物及其组织特异性作用。

Introduction

对测量葡萄糖摄取的需求随着解决依赖葡萄糖代谢的多种疾病的流行病增加的迫切需要而增加。退行性代谢性疾病、神经和认知障碍1、炎症2 和传染病3、癌症45 以及衰老6 的潜在机制取决于葡萄糖代谢的能量及其储存、合成代谢过程、蛋白质和基因修饰、信号传导、基因调节以及核酸的合成和复制789.糖尿病(DM)与葡萄糖摄取调节功能障碍直接相关。糖尿病是一系列慢性疾病,如1型,-2型和-3型糖尿病,妊娠期糖尿病,年轻人的成熟期发病型糖尿病,以及由环境和/或遗传因素诱导的其他类型的这种疾病。2016年,世卫组织第一份关于糖尿病的全球报告显示,自1980年以来,患有最广泛糖尿病的成年人数量几乎翻了两番,达到4.22亿成年人10人,而这一糖尿病患者人数在过去几十年中呈指数级增长。仅在2019年,估计就有150万例死亡是由10地中海米直接造成的。这种戏剧性的激增是由于2型糖尿病的增加和驱动它的条件,包括超重和肥胖10。COVID-19大流行显示,与普通人群相比,糖尿病患者的死亡率增加了两倍,这表明葡萄糖代谢在免疫防御中的作用深刻但知之甚少3。糖尿病、肥胖症和其他疾病的预防、早期诊断和治疗需要优化不同组织对葡萄糖摄取的测量,并确定影响葡萄糖摄取的环境11、营养12、内分泌13、遗传14 和表观遗传15 个因素。

在研究中,细胞内和/或组织对葡萄糖的摄取通常通过体外16,1718体内19中的荧光标记葡萄糖(FD-葡萄糖)来测量。与使用放射性标记葡萄糖20,分析质谱分析21,代谢组学22,核磁共振方法23和正电子发射断层扫描/计算机断层扫描(PET / CT)524的更精确方法相比,FD-葡萄糖成为首选方法。与FD-葡萄糖摄取不同,需要更多生物材料的分析方法可能涉及多步骤样品制备,昂贵的仪器和复杂的数据分析。细胞培养物中FD-葡萄糖摄取的有效且廉价的测量已被用于概念验证实验,并且可能需要通过其他方法进行验证。

FD-葡萄糖应用于葡萄糖摄取研究的基础是与内源性葡萄糖25相比,FD-葡萄糖的代谢减少。尽管如此,内源性葡萄糖和FD-葡萄糖都动态分布在所有细胞区室中,用于合成代谢,分解代谢和信号传导过程。FD-葡萄糖的区室化和时间依赖性处理25 干扰荧光测量,并且是在高通量筛选实验,动力学分析,3D细胞培养,共培养和组织外植体实验中使用该测定的主要限制因素。在这里,我们提供的数据证明了FD-葡萄糖的细胞外消耗与其细胞内摄取之间存在高度相关性,这表明FD-葡萄糖的细胞外消耗作为细胞内葡萄糖摄取的替代测量。应用葡萄糖细胞外消耗的测量来验证用胰岛素治疗的小鼠和实验药物18 中葡萄糖摄取的组织特异性差异,以提供该方法的原理证明。

目前的方案描述了3T3-L1细胞中FD-葡萄糖摄取的细胞内和细胞外(1)测量。方案1-7解释了细胞的培养和生长48小时;细胞饥饿,刺激和基线细胞外测量;和细胞外FD-葡萄糖的刺激后测量和FD-葡萄糖和蛋白质的细胞内测量。协议第8部分描述了在存在和不存在胰岛素和氨基酸化合物2(AAC2)的情况下从ob / ob小鼠解剖的组织中FD-葡萄糖的细胞外摄取的体外测量,该方法在其他地方描述18

Protocol

动物研究由俄亥俄州立大学机构动物护理和使用委员会批准(OSU,协议2007A0262-R4)。 注意:所有程序必须在鼓风机打开和熄灯的II类生物安全柜中完成。 1. 材料准备 注:所有材料均列在 材料表中。 根据 表 1,在II类生物安全柜中制备培养基1,离心培养基2,并将荧光2-脱氧-2-[(7-硝基-2,…

Representative Results

在3T3-L1前脂肪细胞中测量细胞内摄入和细胞外葡萄糖消耗,以响应不同浓度的FD-葡萄糖(图2),有和没有胰岛素刺激。 图2A 显示FD-葡萄糖细胞内摄取的剂量依赖性增加,在胰岛素存在下显着增加。 图2B显示了相同细胞中细胞外FD-葡萄糖的伴随降低,其中胰岛素刺激导致细胞外FD-葡萄糖水平显着降低,与没有胰岛素刺激的样品相?…

Discussion

细胞外FD-葡萄糖消耗与细胞培养中归一化的细胞内葡萄糖摄取的直接比较显示出高度相关性,这表明细胞外葡萄糖消耗可能是葡萄糖摄取评估的替代测量。细胞外FD-葡萄糖的测量可以使用广泛的FD葡萄糖浓度,并且0.5-2.5μg FD-葡萄糖/mL似乎提供了最佳范围。细胞外FD-葡萄糖不需要归一化为细胞内FD-葡萄糖摄取所需的细胞数量或蛋白质浓度。细胞外FD-葡萄糖测量的预期局限性是研究活性氧诱导剂和外…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

该项目得到了拉尔夫和玛丽安·福克医学研究催化剂奖和凯瑟琳·凯利奖的支持。其他支持包括国家研究资源中心UL1RR025755和NCI P30CA16058(OSUCCC),即NIH医学研究路线图。内容仅由作者负责,不代表国家研究资源中心或NIH的官方观点。

Materials

3T3-L1 mouse fibroblasts ATCC CL-173 Cell line
96-well plates Falcon 353227 Plastic ware
B6.V-Lepob/J male mice Jackson Laboratory stock number 000632 Mice
BioTek Synergy H1 modular multimode microplate reader (Fisher Scientific, US) Fisher Scientific, US  B-SHT Device
Bovine serum Gibco/ThermoFisher 161790-060 Cell culture
Calf serum Gibco/ThermoFisher 26010-066 Cell culture
Cell incubator Forma Series II Water Jacket Device
Diet (mouse/rat diet, irradiated) Envigo Teklad LM-485 Diet
Dimethylsulfoxide (DMSO) Sigma LifeScience D2650-100mL Reagent
Dulbecco's Modified Eagle Medium Gibco/ThermoFisher  11965-092 Cell culture
Ethanol Sigma Aldrich E7023-500mL Reagent
Fluorescent 2-deoxy-2-[(7-nitro-2,1,3-benzoxadiazol-4-yl) amino]-D-glucose) Sigma 72987-1MG Assay
Glucose-free and phenol red-free DMEM Gibco/ThermoFisher A14430-01 Cell culture
Human insulin 10 mg/mL MilliporeSigma, Cat N 91077C Cat N 91077C Reagent
Isoflurane, 5% Henry Schein NDC 11695-6776-2 Anestaetic
Penicillin/streptomycin (P/S) Gibco/ThermoFisher 15140-122 Cell culture
Phosphate buffered solution Sigma-Aldrich DA537-500 mL Cell culture
Pierce bicinchoninic acid (BCA) protein assay ThermoFisher Cat N23225 Assay
Radioimmunoprecipitation assay lysis buffer Santa Cruz Biotechnology sc-24948 Assay
Trypsin-EDTA (0.05%) Gibco/ThermoFisher  25300-054 Cell culture

Referenzen

  1. Kyrtata, N., Emsley, H. C. A., Sparasci, O., Parkes, L. M., Dickie, B. R. A systematic review of glucose transport alterations in Alzheimer’s disease. Frontiers in Neuroscience. 15, 568 (2021).
  2. Garcia-Carbonell, R., et al. Critical role of glucose metabolism in rheumatoid arthritis fibroblast-like synoviocytes. Arthritis Rheumatology. 68 (7), 1614-1626 (2016).
  3. Kumar, A., et al. Is diabetes mellitus associated with mortality and severity of COVID-19? A meta-analysis. Diabetes & Metabolic Syndrome: Clinical Research & Review. 14 (4), 535-545 (2020).
  4. Lee, J. H., et al. Different prognostic impact of glucose uptake in visceral adipose tissue according to sex in patients with colorectal cancer. Scientific Reports. 11 (1), 21556 (2021).
  5. Miner, M. W. G., et al. Comparison of: (2S,4R)-4-[(18)F]Fluoroglutamine, [(11)C]Methionine, and 2-Deoxy-2-[(18)F]Fluoro-D-Glucose and two small-animal PET/CT systems imaging rat gliomas. Frontiers in Oncology. 11 (18), 730358 (2021).
  6. Gumbiner, B., Thorburn, A. W., Ditzler, T. M., Bulacan, F., Henry, R. R. Role of impaired intracellular glucose metabolism in the insulin resistance of aging. Metabolism. 41 (10), 1115-1121 (1992).
  7. Ebrahimi, A. G., et al. Beta cell identity changes with mild hyperglycemia: Implications for function, growth, and vulnerability. Molecular Metabolism. 35, 100959 (2020).
  8. Ruberto, A. A., et al. KLF10 integrates circadian timing and sugar signaling to coordinate hepatic metabolism. Elife. 10, 65574 (2021).
  9. Stocks, B., Zierath, J. R. Post-translational modifications: The signals at the intersection of exercise, glucose uptake, and insulin sensitivity. Endocrinology Reviews. , (2021).
  10. World Health Organization. Global report on diabetes. World Health Organization. , (2016).
  11. Kolb, H., Martin, S. Environmental/lifestyle factors in the pathogenesis and prevention of type 2 diabetes. BMC Medicine. 15 (1), 131 (2017).
  12. Galicia-Garcia, U., et al. Pathophysiology of type 2 diabetes mellitus. International Journal of Molecular Science. 21 (17), 6275 (2020).
  13. Petrov, M. S., Basina, M. DIAGNOSIS OF ENDOCRINE DISEASE: Diagnosing and classifying diabetes in diseases of the exocrine pancreas. European Journal of Endocrinology. 184 (4), 151-163 (2021).
  14. Sirdah, M. M., Reading, N. S. Genetic predisposition in type 2 diabetes: A promising approach toward a personalized management of diabetes. Clinical Genetics. 98 (6), 525-547 (2020).
  15. Ramos-Lopez, O., Milagro, F. I., Riezu-Boj, J. I., Martinez, J. A. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflammation Research. 70 (1), 29-49 (2021).
  16. Yamamoto, N., et al. Measurement of glucose uptake in cultured cells. Current Protocols in Pharmacology. 71 (1), 12-14 (2015).
  17. Yang, L., et al. A sensitive and simple HPLC-FLD-based method for the measurement of intracellular glucose uptake. Food Chemistry. 372, 131218 (2021).
  18. Lee, A., et al. Amino acid-based compound activates atypical PKC and leptin receptor pathways to improve glycemia and anxiety like behavior in diabetic mice. Biomaterials. 239, 119839 (2020).
  19. Shukla, S. K., Mulder, S. E., Singh, P. K. Hypoxia-mediated in vivo tumor glucose uptake measurement and analysis. Methods in Molecular Biology. 1742, 107-113 (2018).
  20. Jakson, I., Ujvari, D., Brusell Gidlof, S., Linden Hirschberg, A. Insulin regulation of solute carrier family 2 member 1 (glucose transporter 1) expression and glucose uptake in decidualizing human endometrial stromal cells: an in vitro study. Reproductive Biology and Endocrinology. 18 (1), 117 (2020).
  21. Saparbaev, E., et al. Identification and quantification of any isoforms of carbohydrates by 2D UV-MS fingerprinting of cold ions. Analytical Chemistry. 92 (21), 14624-14632 (2020).
  22. Schulz, A., et al. Targeted metabolomics of pellicle and saliva in children with different caries activity. Scientific Reports. 10 (1), 697 (2020).
  23. Shulman, R. G. Nuclear magnetic resonance studies of glucose metabolism in non-insulin-dependent diabetes mellitus subjects. Molecular Medicine. 2 (5), 533-540 (1996).
  24. Cochran, B. J., et al. In vivo PET imaging with [(18)F]FDG to explain improved glucose uptake in an apolipoprotein A-I treated mouse model of diabetes. Diabetologia. 59 (18), 1977-1984 (2016).
  25. Lloyd, P. G., Hardin, C. D., Sturek, M. Examining glucose transport in single vascular smooth muscle cells with a fluorescent glucose analog. Physiological Research. 48 (6), 401-410 (1999).
  26. Beeton, C., Garcia, A., Chandy, K. G. Drawing blood from rats through the saphenous vein and by cardiac puncture. Journal of Visualized Experiments. (7), e266 (2007).
  27. DiSilvestro, D. J., et al. Leptin production by encapsulated adipocytes increases brown fat, decreases resistin, and improves glucose intolerance in obese mice. PLoS One. 11 (4), 0153198 (2016).
  28. Friedman, J. M. Leptin and the endocrine control of energy balance. Nature Metabolism. 1 (8), 754-764 (2019).
  29. Guillam, M. T., Burcelin, R., Thorens, B. Normal hepatic glucose production in the absence of GLUT2 reveals an alternative pathway for glucose release from hepatocytes. Proceedings of the National Academy of Sciences. 95 (21), 12317-12321 (1998).
  30. Guillam, M. T., et al. Early diabetes and abnormal postnatal pancreatic islet development in mice lacking Glut-2. Nature Genetics. 17 (3), 327-330 (1997).
  31. Barros, L. F., et al. Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. Journal of Neurochemistry. 109, 94-100 (2009).
  32. Sprinz, C., et al. Effects of blood glucose level on 18F-FDG uptake for PET/CT in normal organs: A systematic review. PLoS One. 13 (2), 0193140 (2018).
  33. Johnson, T. V., Martin, K. R. Development and characterization of an adult retinal explant organotypic tissue culture system as an in vitro intraocular stem cell transplantation model. Investigative Ophthalmology & Visual Science. 49 (8), 3503-3512 (2008).
  34. de Urquiza, A. M., et al. Docosahexaenoic acid, a ligand for the retinoid X receptor in mouse brain. Science. 290 (5499), 2140-2144 (2000).
  35. Olson, A. L., Pessin, J. E. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annual Review of Nutrition. 16 (1), 235-256 (1996).
  36. Muhanna, D., Arnipalli, S. R., Kumar, S. B., Ziouzenkova, O. Osmotic adaptation by Na(+)-dependent transporters and ACE2: correlation with hemostatic crisis in COVID-19. Biomedicines. 8 (11), 460 (2020).
  37. Ligasova, A., Koberna, K. DNA dyes-highly sensitive reporters of cell quantification: comparison with other cell quantification methods. Molecules. 26 (18), 5515 (2021).
  38. DeFronzo, R. A., Tobin, J. D., Andres, R. Glucose clamp technique: a method for quantifying insulin secretion and resistance. American Journal of Physiology. 237 (3), 214-223 (1979).

Play Video

Diesen Artikel zitieren
Kumar, S. B., Arnipalli, S., Abushukur, A., Carrau, S., Mehta, P., Ziouzenkova, O. Extracellular Glucose Depletion as an Indirect Measure of Glucose Uptake in Cells and Tissues Ex Vivo. J. Vis. Exp. (182), e63681, doi:10.3791/63681 (2022).

View Video