胚中の特定の細胞の破壊は、細胞の運命に関与する細胞相互作用を研究するための強力なツールである。本プロトコールは、褐色藻類サッカリーナ・ラティッシマの初期胚における標的細胞のレーザーアブレーションのための技術を記載する。
サッカリーナ・ラティッシマでは、胚は薄層または刃と呼ばれる単層細胞シートとして発達する。各胚細胞は観察が容易であり、その隣人と容易に区別でき、そして個別に標的化することができる。何十年もの間、レーザーアブレーションは胚発生を研究するために使用されてきました。ここでは、褐色藻類S. latissimaの初期胚について、細胞特異的レーザーアブレーションのプロトコルが開発された。提示された研究には、(1)サッカリナ胚の調製、培養条件を含む重要なパラメータの説明、(2)レーザーアブレーション設定、および(3)タイムラプス顕微鏡を用いた照射胚のその後の成長のモニタリングが含まれる。さらに、イメージングプラットフォームからラボに胚を輸送するための最適な条件に関する詳細が提供されており、その後の胚発生に深く影響する可能性があります。ラミナリア目に属する藻類は、サッカリナに似た胚発生パターンを示すため、このプロトコルはこの分類群の他の種に容易に転移することができる。
レーザーアブレーションは、胚発生を研究するために何十年もの間使用されてきました。胚細胞にレーザー光を照射すると、胚発生中の再生能と細胞系譜の改変を監視し、標的アブレーションが細胞分裂と細胞運命に及ぼす影響を調べることができます。レーザーアブレーション法で使用されるモデル生物は、典型的には動物であり、例えば昆虫1,2、線虫3,4、脊椎動物5,6、および時には植物7,8である。さらに、1994年と1998年に褐色藻類のヒバコにレーザーマイクロアブレーションアプローチを使用して、初期胚の光偏光における細胞壁の役割を実証した9,10。
褐藻類は、16億年前に真核生物の木の根元で発散したグループStramenopilesに属します。その結果、それらは、動植物11などの他の多細胞生物から系統学的に独立している。Saccharina latissimaは、より一般的に昆布として知られているLaminarialesに属し、彼らは30メートル以上のサイズに達する、地球上で最大の生物の一つですサッカリナ属は、食品や飼料などの多くの用途に使用される大きな海藻であり、その多糖類は、世界中の農業、薬理学、化粧品産業で使用するために抽出されています12、13。その栽培は、主にアジアで、そして最近ではヨーロッパで、外洋に幼体を放出する前に孵化場で胚を準備する必要があります。すべての昆布と同様に、それは、一倍体配偶子が成長し、受精のために配偶子を生成する微視的な配偶子植物期と、海底または岩石に取り付けられたホールドファストから大きな平面ブレードが発達する二倍体の巨視的胞子植物期からなる二相性ライフサイクルを有する。この胞子植物は成熟時に一倍体胞子を放出し、それによってライフサイクル14、15、16を完了させる。
S. latissimaはいくつかの 興味深い形態学的特徴を提示する17。その胚は、異なる組織型の出現と一致する多層構造を獲得する前に、単層平面シート15、18、19として発達する。さらに、ラミナリア目は褐藻類の唯一の分類群の1つであり、その胚は母体の配偶子植物組織に付着したままである(デスマレスティアレスとスポロクナレスも15)。この機能は、この発生過程における母体組織の役割を研究し、褐藻類の母体制御機構を動物および植物の制御機構と比較する機会を提供する。
この記事では、初期の昆布胚におけるレーザーアブレーションのための最初の完全なプロトコルを提示します。UV nsパルス技術を含むこのプロトコルは、胚発生中のそれぞれの役割を研究するために、個々の胚細胞の特異的な破壊をもたらす。この手順は、ラミナリア目における胚発生中の細胞相互作用および細胞運命を調査するための信頼できるアプローチを提供する。
局所細胞レーザーアブレーションは、高い精度で時間的および空間的アブレーションを可能にします。しかし、その効率は、標的細胞のアクセス不能によって妨げられる可能性がある。例えば、すべての細胞は三次元胚のものである。このプロトコルは、レーザービームですべての細胞を簡単に区別して個別に破壊することができる単層薄層を発達させる藻 類Saccharina latissimaの胚で開?…
The authors have nothing to disclose.
S.B.の博士号助成金は、ブルターニュ地方(ARED助成金番号COH20020)とソルボンヌ大学から資金提供を受けています。博士課程 I.T.is 助成金は、ブルターニュ地域(ARED助成金番号COH18020)とノルヴェジアンNMBU大学によって資金提供されています。このプロジェクトは、通商産業省の学際的プログラムを通じてCNRSから財政的支援を受けています。MRicは、フランス国立研究庁(ANR-10-INBS-04)が支援する国家インフラフランスバイオイメージングのメンバーです。
25 mm glass bottom petri dish | NEST | 801001 | |
Autoclaved sea water | – | Collected offshore near the Astan buoy (48°44.934 N 003°57.702 W) close to Roscoff, France, at a depth of 20 m. | |
Cell scraper | MED 2 | 83.3951 | |
Cell strainer 40 µm | Corning / Falcon | 352340 | |
Culture cabinets | Snijders Scientific Plant Growth Cabinet ECD01 | Any other brand is suitable provided that the light intensity, the photoperiod and the temperature can be controlled. | |
LSM 880 Zeiss confocal microscope | Carl Zeiss microscopy, Jena, Germany | Ablation and imaging were performed using a 40x/1.2 water objective | |
Pellet pestles | Sigma Aldrich | Z359947 | Blue polypropylene (autoclavable) |
Provasoli supplement | – | Recipe is available here: http://www.sb-roscoff.fr/sites/www.sb-roscoff.fr/files/documents/station-biologique-roscoff-preparation-du-provasoli-2040.pdf | |
Pulsed 355 laser (UGA-42 Caliburn 355/25) | Rapp OptoElectronic, Wedel, Germany | ||
Scalpel | Paramount | PDSS 11 | |
SysCon software | Rapp OptoElectronic, Wedel, Germany | Laser-driver software | |
ZEN software | Carl Zeiss microscopy, Jena, Germany | Imaging software, used together with the SysCon software; Black 2.3 version |