Summary

用于生物标志物检测的电解质门控石墨烯场效应晶体管的开发与功能化

Published: February 01, 2022
doi:

Summary

本方案论证了电解质门控石墨烯场效应晶体管(EGGFET)生物传感器的发展及其在生物标志物免疫球蛋白G(IgG)检测中的应用。

Abstract

在目前的研究中,石墨烯及其衍生物已被研究并用于许多应用,包括电子,传感,储能和光催化。合成和制造高质量、良好均匀性和低缺陷的石墨烯对于高性能和高灵敏度器件至关重要。在许多合成方法中,化学气相沉积(CVD)被认为是制造石墨烯的领先方法,可以控制石墨烯层的数量并产生高质量的石墨烯。CVD石墨烯需要从其生长的金属基板上转移到绝缘基板上,以用于实际应用。然而,石墨烯的分离和转移到新的基板上对于在不损害或影响石墨烯的结构和性能的情况下均匀层具有挑战性。此外,电解质门控石墨烯场效应晶体管(EGGFET)由于其高灵敏度和标准器件配置,已在各种生物分子检测中的广泛应用得到证明。本文介绍了聚甲基丙烯酸甲酯(PMMA)辅助的石墨烯转移方法,石墨烯场效应晶体管(GFET)的制备以及生物标志物免疫球蛋白G(IgG)检测。应用拉曼光谱和原子力显微镜对转移石墨烯进行表征.该方法被证明是一种实用的方法,用于转移清洁和无残留的石墨烯,同时将底层石墨烯晶格保留在绝缘基板上,用于电子或生物传感应用。

Introduction

石墨烯及其衍生物已被研究并用于许多应用,包括电子12,传感345,储能67和光催化168。合成和制造高质量、良好均匀性和低缺陷的石墨烯对于高性能和高灵敏度器件至关重要。自2009年化学气相沉积(CVD)的发展以来,它已经显示出巨大的前景,并已成为石墨烯家族910,111213的重要成员。它生长在金属基板上,后来用于实际用途,转移到绝缘基板14上。最近有几种转移方法用于转移CVD石墨烯。聚(甲基丙烯酸甲酯)(PMMA)辅助方法是不同技术中最常用的。该方法特别适合工业用途,因为它具有大规模,低成本和高质量的转移石墨烯1415。该方法的关键方面是摆脱CVD石墨烯应用中的PMMA残留物,因为残留物会导致石墨烯141516的电子特性的偏角,对生物传感器的灵敏度和性能造成影响1718,并产生显着的器件间变化19

在过去的几十年中,基于纳米材料的生物传感器得到了广泛的研究,包括硅纳米线(SiNW),碳纳米管(CNT)和石墨烯20。由于其单原子层结构和独特的性能,石墨烯表现出优越的电子特性,良好的生物相容性和简单的功能化,使其成为开发生物传感器的有吸引力的材料14212223。由于场效应晶体管(FET)具有高灵敏度、标准配置和高性价比的质量生产性2124等特性,FET在便携式和护理点实施中比其他基于电子的生物传感设备更受欢迎。电解质门控石墨烯场效应晶体管(EGGFET)生物传感器是所述FET2124的示例。EGGFET可以检测各种靶向分析物,如核酸25,蛋白质2426,代谢物27和其他生物相关分析物28。这里提到的技术确保了CVD石墨烯在无标记生物传感纳米电子器件中的实现,该器件比其他生物传感器件29提供更高的灵敏度和准确的时间检测。

在这项工作中,展示了开发EGGFET生物传感器并将其用于生物标志物检测的功能化的整个过程,包括将CVD石墨烯转移到绝缘基板上,拉曼和转移石墨烯的AFM表征。此外,这里还讨论了EGGFET的制备以及与聚二甲基硅氧烷(PDMS)样品输送良好的整合,生物感受器功能化以及通过尖峰和恢复实验从血清中成功检测人免疫球蛋白G(IgG)。

Protocol

1. 石墨烯的转移化学气相沉积 使用剪刀将铜基板上的石墨烯片切成两半(2.5 cm x 5 cm)。使用耐热胶带将石墨烯方块的四个角固定在微调器垫片上(参见 材料表)。注:购买的石墨烯尺寸为5厘米x 5厘米(见 材料表)。 用PMMA 495K A4的薄层(100-200nm)旋转涂覆石墨烯片,以500rpm旋转10秒,然后以2000rpm旋转50秒。然后将样品在150°C下烘烤5分钟。<…

Representative Results

代表性的结果表明,转移的CVD石墨烯分别具有拉曼和AFM的特征。拉曼图像的G峰和2D峰提供了有关转移的单层石墨烯32 的存在和质量的全面信息(图1)。采用标准光刻工艺30、31 对GFET器件进行制造,如图 2所示。 图3 显示了装配的PDMS样品输送孔和实验设置的制造的GFET。…

Discussion

购买的铜膜上的CVD石墨烯需要修剪成合适的尺寸,以进行以下制造步骤。薄膜的切割会导致起皱,这需要防止。制造步骤中提供的参数可以参考石墨烯的等离子体蚀刻,并且在使用不同的仪器时,这些数字可以改变。必须密切监测和检查蚀刻样品,以确保完整的石墨烯蚀刻。可以应用多种预清洁方法来清洁基材,例如在丙酮,IPA和去离子水中超声处理5分钟,去离子水冲洗,氮气干燥或用O2</sub…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

实验是在西弗吉尼亚大学进行的。我们感谢西弗吉尼亚大学用于器件制造和材料表征的共享研究设施。这项工作得到了美国国家科学基金会的支持,授予号。NSF1916894.

Materials

1-pyreneutyric acid N- hydroxysuccinimide ester Sigma Aldrich 457078-1G functionalization
Asylum MFP-3D Atomic Force Microscope Oxford Instruments graphene characterization
AZ 300 MIF MicroChemicals AZ 300 MIF photoresist developer
AZ 300 MIF MicroChemicals AZ 300 MIF photoresist
Bovine Serum Albumin Sigma Aldrich 810014 blocking
Branson 1210 Sonicator SONITEK sample cleaning
Copper Etchant Sigma Aldrich 667528-500ML removing copper film to release graphene
Dimethyl Sulfoxide (DMSO) VWR 97063-136 functionalization
Disposable Biopsy Punches, Integra Miltex VWR 21909-144 create well in PDMS
Gold etchant Gold Etch, TFA, Transene 658148 enchant
Graphene Graphene supermarket 2" x 2" sheet biosensing element of the device
IgG aptamer Base Pair Biotechnologies customized bioreceptor
Keithley 4200A-SCS Parameter Analyzer Tektronix measurement and detection
KMG CR-6 KMG chemicals 64216 Chromium etchant
Kurt J. Lesker E-beam Evaporator Kurt J. Lesker metal deposition
Laurell Technologies 400 Spinners Laurell Technologies WS-400BZ-6NPP/LITE thin film coating
March PX-250 Plasma Asher March Instruments sample cleaning
Nickel etchant Nickel Etchant, TFB, Transene 600016000 etchant
OAI Flood Exposure OAI photolithography
Phosphate Buffered Saline (PBS) Sigma Aldrich 806552-500ML buffer
PMMA 495K A4 MicroChemicals PMMA 495K A4 Photoresist for assisting graphene transferring
Polydimethylsiloxane (PDMS) Sigma Aldrich Sylgard 184 sample delivery well
Renishaw InVia Raman Microscope Renishaw graphene characterization
Sodium Hydroxide (NaOH) Sigma Aldrich 221465-25G functionalization
Suss Microtech MA6 Mask Aligner Suss MicroTec photolithography
Thermo Scientific Cimarec Hotplate Thermo Scientific SP131635 sample and device Baking

Referenzen

  1. Saini, D. Synthesis and functionalization of graphene and application in electrochemical biosensing. Nanotechnology Reviews. 5 (4), 393-416 (2016).
  2. Emtsev, K. V., Bostwick, A., Horn, K., et al. Towards wafer-size graphene layers by atmospheric pressure graphitization of silicon carbide. Nature Materials. 8 (3), 203-207 (2009).
  3. Wang, Y., et al. Electrochemical delamination of CVD-grown graphene film: Toward the recyclable use of copper catalyst. ACS Nano. 5 (12), 9927-9933 (2011).
  4. Carvalho Fernandes, D. C., Lynch, D., Berry, V. 3D-printed graphene/polymer structures for electron-tunneling based devices. Scientific Reports. 10 (1), 1-8 (2020).
  5. Gao, L., et al. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum. Nature Communications. 3, 699 (2012).
  6. Singh, J., Rathi, A., Rawat, M., Gupta, M. Graphene: From synthesis to engineering to biosensor applications. Frontiers of Materials Science. 12 (1), 1-20 (2018).
  7. Randviir, E. P., Brownson, D. A. C., Banks, C. E. A decade of graphene research: Production, applications and outlook. Materials Today. 17 (9), 426-432 (2014).
  8. Suvarnaphaet, P., Pechprasarn, S. Graphene-based materials for biosensors: A review. Sensors (Switzerland). 17 (10), 2161 (2017).
  9. Li, X., Cai, W., An, J., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science. 324 (5932), 1312-1314 (2009).
  10. Yu, Q., Lian, J., Siriponglert, S., Li, H., Chen, Y. P., Pei, S. S. Graphene segregated on Ni surfaces and transferred to insulators. Applied Physics Letters. 93 (11), 113103 (2008).
  11. Xu, S. C., et al. Direct synthesis of graphene on SiO2 substrates by chemical vapor deposition. CrystEngComm. 15 (10), 1840-1844 (2013).
  12. Zhang, C., et al. Facile synthesis of graphene on dielectric surfaces using a two-temperature reactor CVD system. Nanotechnology. 24 (39), 395603 (2013).
  13. Zhang, C., et al. Direct formation of graphene-carbon nanotubes hybrid on SiO2 substrate via chemical vapor deposition. Science of Advanced Materials. 6 (2), 399-404 (2014).
  14. Sun, J., Finklea, H. O., Liu, Y. Characterization and electrolytic cleaning of poly(methyl methacrylate) residues on transferred chemical vapor deposited graphene. Nanotechnology. 28 (12), 125703 (2017).
  15. Lin, Y. C., Lu, C. C., Yeh, C. H., Jin, C., Suenaga, K., Chiu, P. W. Graphene annealing: How clean can it be. Nano Letters. 12 (1), 414-419 (2012).
  16. Pirkle, A., et al. The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2. Applied Physics Letters. 99 (12), 122108 (2011).
  17. Chen, T. Y., et al. Label-free detection of DNA hybridization using transistors based on CVD grown graphene. Biosensors and Bioelectronics. 41 (1), 103-109 (2013).
  18. Xu, S., et al. Direct growth of graphene on quartz substrates for label-free detection of adenosine triphosphate. Nanotechnology. 25 (16), 165702 (2014).
  19. Dan, Y., Lu, Y., Kybert, N. J., Luo, Z., Johnson, A. T. C. Intrinsic response of graphene vapor sensors. Nano Letters. 9 (4), 1472-1475 (2009).
  20. Zhang, A., Lieber, C. M. -. Nano-Bioelectronics. Chemical Reviews. 116 (1), 215-257 (2015).
  21. Forsyth, R., Devadoss, A., Guy, O. J. Graphene Field effect transistors for biomedical applications: Current status and future prospects. Diagnostics (Basel). 7 (3), 45 (2017).
  22. Dankerl, M., et al. Graphene solution-gated field-effect transistor array for sensing applications. Advanced Functional Materials. 20 (18), 3117-3124 (2010).
  23. He, Q., Wu, S., Yin, Z., Zhang, H. Graphene -based electronic sensors. Chemical Science. 3 (6), 1764-1772 (2012).
  24. Sun, J., Liu, Y. Matrix effect study and immunoassay detection using electrolyte-gated graphene biosensor. Micromachines. 9 (4), 142 (2018).
  25. Mohanty, N., Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Letters. 8 (12), 4469-4476 (2008).
  26. Ohno, Y., Maehashi, K., Yamashiro, Y., Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH and protein adsorption. Nano Letters. 9 (9), 3318-3322 (2009).
  27. Huang, Y., Dong, X., Shi, Y., Li, C. M., Li, L. J., Chen, P. Nanoelectronic biosensors based on CVD grown graphene. Nanoscale. 2 (8), 1485-1488 (2010).
  28. Jiang, S., et al. Real-time electrical detection of nitric oxide in biological systems with sub-nanomolar sensitivity. Nature Communications. 4 (1), 1-7 (2013).
  29. Bai, Y., Xu, T., Zhang, X. Graphene-based biosensors for detection of biomarkers. Micromachines. 11 (1), 60 (2020).
  30. Madou, M. J. . Fundamentals of Microfabrication The Science of Miniaturization. 2nd ed. , (2002).
  31. Xia, Y., Whitesides, G. M. Soft lithography. Annual Review of Material Sciences. 28 (1), 153-184 (2003).
  32. Wang, Y. Y., et al. Raman studies of monolayer graphene: The substrate effect. Journal of Physical Chemistry C. 112 (29), 10637-10640 (2008).
  33. Betancur, V., Sun, J., Wu, N., Liu, Y. Integrated lateral flow device for flow control with blood separation and biosensing. Micromachines. 8 (12), 367 (2017).
  34. Butt, A. . Physics and Chemistry of Interfaces. 3rd ed. , (2003).
  35. Sitko, R., Zawisza, B., Malicka, E. Graphene as a new sorbent in analytical chemistry. TrAC Trends in Analytical Chemistry. 51, 33-43 (2013).
  36. Bai, L., et al. Graphene for energy storage and conversion: Synthesis and Interdisciplinary applications. Electrochemical Energy Reviews. 3 (2), 395-430 (2019).
  37. Boretti, A., Al-Zubaidy, S., Vaclavikova, M., Al-Abri, M., Castelletto, S., Mikhalovsky, S. Outlook for graphene-based desalination membranes. npj Clean Water. 1 (1), 1-11 (2018).
  38. Pumera, M. Graphene in biosensing. Materials Today. 14 (7-8), 308-315 (2011).
  39. Sun, J., Liu, Y. Unique constant phase element behavior of the electrolyte-graphene interface. Nanomaterials. 9 (7), 923 (2019).
  40. Sun, J., Camilli, L., Caridad, J. M., Santos, J. E., Liu, Y. Spontaneous adsorption of ions on graphene at the electrolyte-graphene interface. Applied Physics Letters. 117 (20), 203102 (2020).

Play Video

Diesen Artikel zitieren
Ishraq, S., Sun, J., Liu, Y. Development and Functionalization of Electrolyte-Gated Graphene Field-Effect Transistor for Biomarker Detection. J. Vis. Exp. (180), e63393, doi:10.3791/63393 (2022).

View Video