本方案论证了电解质门控石墨烯场效应晶体管(EGGFET)生物传感器的发展及其在生物标志物免疫球蛋白G(IgG)检测中的应用。
在目前的研究中,石墨烯及其衍生物已被研究并用于许多应用,包括电子,传感,储能和光催化。合成和制造高质量、良好均匀性和低缺陷的石墨烯对于高性能和高灵敏度器件至关重要。在许多合成方法中,化学气相沉积(CVD)被认为是制造石墨烯的领先方法,可以控制石墨烯层的数量并产生高质量的石墨烯。CVD石墨烯需要从其生长的金属基板上转移到绝缘基板上,以用于实际应用。然而,石墨烯的分离和转移到新的基板上对于在不损害或影响石墨烯的结构和性能的情况下均匀层具有挑战性。此外,电解质门控石墨烯场效应晶体管(EGGFET)由于其高灵敏度和标准器件配置,已在各种生物分子检测中的广泛应用得到证明。本文介绍了聚甲基丙烯酸甲酯(PMMA)辅助的石墨烯转移方法,石墨烯场效应晶体管(GFET)的制备以及生物标志物免疫球蛋白G(IgG)检测。应用拉曼光谱和原子力显微镜对转移石墨烯进行表征.该方法被证明是一种实用的方法,用于转移清洁和无残留的石墨烯,同时将底层石墨烯晶格保留在绝缘基板上,用于电子或生物传感应用。
石墨烯及其衍生物已被研究并用于许多应用,包括电子1,2,传感3,4,5,储能6,7和光催化1,6,8。合成和制造高质量、良好均匀性和低缺陷的石墨烯对于高性能和高灵敏度器件至关重要。自2009年化学气相沉积(CVD)的发展以来,它已经显示出巨大的前景,并已成为石墨烯家族9,10,11,12,13的重要成员。它生长在金属基板上,后来用于实际用途,转移到绝缘基板14上。最近有几种转移方法用于转移CVD石墨烯。聚(甲基丙烯酸甲酯)(PMMA)辅助方法是不同技术中最常用的。该方法特别适合工业用途,因为它具有大规模,低成本和高质量的转移石墨烯14,15。该方法的关键方面是摆脱CVD石墨烯应用中的PMMA残留物,因为残留物会导致石墨烯14,15,16的电子特性的偏角,对生物传感器的灵敏度和性能造成影响17,18,并产生显着的器件间变化19。
在过去的几十年中,基于纳米材料的生物传感器得到了广泛的研究,包括硅纳米线(SiNW),碳纳米管(CNT)和石墨烯20。由于其单原子层结构和独特的性能,石墨烯表现出优越的电子特性,良好的生物相容性和简单的功能化,使其成为开发生物传感器的有吸引力的材料14,21,22,23。由于场效应晶体管(FET)具有高灵敏度、标准配置和高性价比的质量生产性21,24等特性,FET在便携式和护理点实施中比其他基于电子的生物传感设备更受欢迎。电解质门控石墨烯场效应晶体管(EGGFET)生物传感器是所述FET21,24的示例。EGGFET可以检测各种靶向分析物,如核酸25,蛋白质24,26,代谢物27和其他生物相关分析物28。这里提到的技术确保了CVD石墨烯在无标记生物传感纳米电子器件中的实现,该器件比其他生物传感器件29提供更高的灵敏度和准确的时间检测。
在这项工作中,展示了开发EGGFET生物传感器并将其用于生物标志物检测的功能化的整个过程,包括将CVD石墨烯转移到绝缘基板上,拉曼和转移石墨烯的AFM表征。此外,这里还讨论了EGGFET的制备以及与聚二甲基硅氧烷(PDMS)样品输送良好的整合,生物感受器功能化以及通过尖峰和恢复实验从血清中成功检测人免疫球蛋白G(IgG)。
购买的铜膜上的CVD石墨烯需要修剪成合适的尺寸,以进行以下制造步骤。薄膜的切割会导致起皱,这需要防止。制造步骤中提供的参数可以参考石墨烯的等离子体蚀刻,并且在使用不同的仪器时,这些数字可以改变。必须密切监测和检查蚀刻样品,以确保完整的石墨烯蚀刻。可以应用多种预清洁方法来清洁基材,例如在丙酮,IPA和去离子水中超声处理5分钟,去离子水冲洗,氮气干燥或用O2</sub…
The authors have nothing to disclose.
实验是在西弗吉尼亚大学进行的。我们感谢西弗吉尼亚大学用于器件制造和材料表征的共享研究设施。这项工作得到了美国国家科学基金会的支持,授予号。NSF1916894.
1-pyreneutyric acid N- hydroxysuccinimide ester | Sigma Aldrich | 457078-1G | functionalization |
Asylum MFP-3D Atomic Force Microscope | Oxford Instruments | graphene characterization | |
AZ 300 MIF | MicroChemicals | AZ 300 MIF | photoresist developer |
AZ 300 MIF | MicroChemicals | AZ 300 MIF | photoresist |
Bovine Serum Albumin | Sigma Aldrich | 810014 | blocking |
Branson 1210 Sonicator | SONITEK | sample cleaning | |
Copper Etchant | Sigma Aldrich | 667528-500ML | removing copper film to release graphene |
Dimethyl Sulfoxide (DMSO) | VWR | 97063-136 | functionalization |
Disposable Biopsy Punches, Integra Miltex | VWR | 21909-144 | create well in PDMS |
Gold etchant | Gold Etch, TFA, Transene | 658148 | enchant |
Graphene | Graphene supermarket | 2" x 2" sheet | biosensing element of the device |
IgG aptamer | Base Pair Biotechnologies | customized | bioreceptor |
Keithley 4200A-SCS Parameter Analyzer | Tektronix | measurement and detection | |
KMG CR-6 | KMG chemicals | 64216 | Chromium etchant |
Kurt J. Lesker E-beam Evaporator | Kurt J. Lesker | metal deposition | |
Laurell Technologies 400 Spinners | Laurell Technologies | WS-400BZ-6NPP/LITE | thin film coating |
March PX-250 Plasma Asher | March Instruments | sample cleaning | |
Nickel etchant | Nickel Etchant, TFB, Transene | 600016000 | etchant |
OAI Flood Exposure | OAI | photolithography | |
Phosphate Buffered Saline (PBS) | Sigma Aldrich | 806552-500ML | buffer |
PMMA 495K A4 | MicroChemicals | PMMA 495K A4 | Photoresist for assisting graphene transferring |
Polydimethylsiloxane (PDMS) | Sigma Aldrich | Sylgard 184 | sample delivery well |
Renishaw InVia Raman Microscope | Renishaw | graphene characterization | |
Sodium Hydroxide (NaOH) | Sigma Aldrich | 221465-25G | functionalization |
Suss Microtech MA6 Mask Aligner | Suss MicroTec | photolithography | |
Thermo Scientific Cimarec Hotplate | Thermo Scientific | SP131635 | sample and device Baking |