Summary

使用茜素红染色检测斑马鱼幼虫中化学诱导的骨质流失

Published: December 28, 2021
doi:

Summary

在这里,我们使用茜素红染色来证明醋酸铅暴露会导致斑马鱼幼虫的骨量变化。这种染色方法可以适用于研究由其他有害毒物引起的斑马鱼幼虫损失的骨质流失。

Abstract

铅(Pb)暴露引起的化学诱导骨质流失可能会对人类和动物骨骼系统产生一系列不利影响。然而,斑马鱼的具体效果和机制尚不清楚。茜素红对钙离子具有很高的亲和力,可以帮助可视化骨骼并说明骨骼矿物质质量。在这项研究中,我们旨在通过使用茜素红染色来检测醋酸铅(PbAc)诱导的斑马鱼幼虫骨质流失。在受精后2至120小时之间用一系列PbAc浓度(0,5,10,20mg / L)处理斑马鱼胚胎。在受精后9天对幼虫进行全支架骨骼染色,并使用ImageJ软件定量总染色面积。结果表明:PbAc暴露组矿化组织呈红色,染色面积显著减少,骨矿化度呈剂量依赖性变化。本文提出了一种染色方案,用于研究PbAc诱导的骨缺损的骨骼变化。该方法还可用于斑马鱼幼虫,以检测由其他化学物质引起的骨质流失。

Introduction

最近的研究证实,糖皮质激素、芳香酶抑制剂和过量饮酒引起的骨质疏松症很常见12.铅 (Pb) 是一种有毒金属,存在于植物、土壤和水生环境中3.虽然Pb对人体的不良影响备受关注,但其对骨骼的不可逆影响仍需进一步研究。铅中毒会导致发育和成人骨骼发生多种病理变化,影响正常生活活动。研究发现,慢性铅暴露与骨损伤之间存在关联4,包括骨骼结构受损5,6骨矿物质密度降低,甚至质疏松症风险增加7。

矿化组织对骨强度非常重要8,骨矿化基质沉积是骨形成的关键指标9。茜素红对钙离子具有很高的亲和力,茜素红染色是评估骨形成的标准程序10。根据这种方法,矿化组织被染成红色,而所有其他组织保持透明。然后通过数字图像分析11对染色区域进行量化。

斑马鱼是一种重要的模式生物,广泛用于药物发现和疾病模型。斑马鱼和人类的遗传研究表明,在分子水平上骨骼形态发生的潜在机制相似12。此外,与鼠模型相比,高通量药物或生物分子筛选在大离合斑马鱼中更可行,促进了成骨或骨毒性分子的机理研究13toto10 中骨骼的差异染色经常用于研究小型脊椎动物和哺乳动物胎儿的骨骼发育不良。采用茜素红染色法研究斑马鱼幼虫中化学物质的骨发育毒性。本文以铅为例描述了检测斑马鱼幼虫中醋酸铅诱导的骨缺陷的方案。

Protocol

此处概述的所有动物程序均已由苏州大学伦理委员会动物护理研究所审查和批准。 1. 鱼类饲养与胚胎采集 14 每天喂鱼三次;确保斑马鱼保持在28.5±0.5°C,光照/黑暗循环为14:10小时。 晚上用产卵池中的隔离板将雄鱼和雌鱼分开,男女比例为2:1。 第二天早上,在上午9:00移除隔离板,并在2小时后收集胚胎。 在实验?…

Representative Results

茜素红染色是测量斑马鱼幼虫骨矿化变化的灵敏特异方法。在这项研究中,我们观察到PbAc对斑马鱼幼虫有不利影响,包括死亡、畸形、心率下降和体长缩短。此外,还评估了斑马鱼幼虫的矿物骨骼区域,以检查PbAc诱导的骨质流失。在9 dpf(图1A)时,头部骨骼的许多骨骼被矿化,因此染成红色,例如蝶旁(PS),眼睑(OP),角分支(CB)和脊索(NC)。相比之下,耳石(OT)…

Discussion

斑马鱼是研究骨代谢疾病的合适模型。与啮齿动物模型相比,斑马鱼模型的建立速度相对较快,并且更容易测量疾病的严重程度。在野生型斑马鱼幼虫中,头部骨骼的矿化发生在5 dpf,轴骨架的矿化发生在7 dpf15。因此,颅骨如PS,OP,CB和NC在9 dpf时发育良好。幼虫完全脱色漂白后,清除软组织,使鱼体外观透明。加入茜素红染色试剂,对斑马鱼的矿骨进行染色和可视化。

<p cla…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家自然科学基金(81872646; 81811540034; 81573173)和江苏省高等教育机构优先学术项目开发(PAPD)的支持。

Materials

1 M Tris-HCl (pH=7.5) Solarbio,Beijing,China 21 for detaining
4% Paraformaldehyde Fix Solution BBI,Shanghai,China 14 fixing tissues
10x PBS buffer BBI,Shanghai,China 15 for fixing
35% H2O2 Yonghua,Jiangsu,China 8 removing pigment
50 mL Centrifuge tube AKX,Jiangsu,China 4
95% Anhydrous ethanol Enox,Jiangsu,China 2 destaining
Alizarin red (Purity 99.5%) Solarbio,Beijing,China 1 staining
Biochemical incubator Yiheng,Shanghai,China 3 raising zebrafish embryos
Electronic scale Sartorius,Germany 5 weighing the solid raw materials
Glycerin (Purity 99.5%) BBI,Shanghai,China 7 storing the stained fish
ImageJ (software) USA 9 digital analysis
KOH (Purity 99.9%) Sigma,America 10 bleaching solution
Lead acetate trihydrate (Purity 99.5%) Aladdin,Shanghai,China 11
MgCl2 (Purity 99.9%) Aladdin,Shanghai,China 12 cleaning solution
NIS-Elements F (software) Nikon, Japan 13 observing and taking photos
Pipe AKX, Jiangsu, China 18 removal of embryos and solution
plates (24-well) Corning,America 17 container for staining embryos
plates (6-well) Corning,America 16 container for breeding embryos
Shaking table Beyotime, China 19 mixing the solution
Stereo microscope Nikon,Japan 20 observing and taking photos
Zebrafish Zebrafish Experiment Center of Soochow University,Suzhou,China 22 experimental animal

Referenzen

  1. Compston, J., et al. Recommendations for the registration of agents for prevention and treatment of glucocorticoid-induced osteoporosis: an update from the Group for the Respect of Ethics and Excellence in Science. Osteoporosis International. 19 (9), 1247-1250 (2008).
  2. Rachner, T. D., Gobel, A., Jaschke, N. P., Hofbauer, L. C. Challenges in preventing bone loss induced by aromatase inhibitors. Journal of Clinical Endocrinology & Metabolism. 105 (10), (2020).
  3. Kataba, A., et al. Acute exposure to environmentally relevant lead levels induces oxidative stress and neurobehavioral alterations in larval zebrafish (Danio rerio). Aquatic Toxicology. 227, 105607 (2020).
  4. Morin, S. N., et al. Differences in fracture prevalence and in bone mineral density between Chinese and White Canadians: the Canadian Multicentre Osteoporosis Study (CaMos). Archives of Osteoporosis. 15 (1), 147 (2020).
  5. Lee, C. M., et al. Chronic lead poisoning magnifies bone detrimental effects in an ovariectomized rat model of postmenopausal osteoporosis. Experimental Toxicologic Pathology. 68 (1), 47-53 (2016).
  6. Theppeang, K., et al. Associations of bone mineral density and lead levels in blood, tibia, and patella in urban-dwelling women. Environmental Health Perspectives. 116 (6), 784-790 (2008).
  7. Sun, Y., et al. Osteoporosis in a Chinese population due to occupational exposure to lead. American Journal Industrial Medicine. 51 (6), 436-442 (2008).
  8. Guadalupe-Grau, A., Fuentes, T., Guerra, B., Calbet, J. A. L. Exercise and bone mass in adults. Sports Medicine. 39 (6), 439-468 (2009).
  9. Ottani, V., Raspanti, M., Ruggeri, A. Collagen structure and functional implications. Micron. 32 (3), 251-260 (2001).
  10. Kelly, W. L., Bryden, M. M. A modified differential stain for cartilage and bone in whole mount preparations of mammalian fetuses and small vertebrates. Stain Technology. 58 (3), 131-134 (1983).
  11. Barrett, R., Chappell, C., Quick, M., Fleming, A. A rapid, high content, in vivo model of glucocorticoid-induced osteoporosis. Biotechnology Journal. 1 (6), 651-655 (2006).
  12. Howe, K., et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 496 (7446), 498-503 (2013).
  13. Fernandez, I., Gavaia, P. J., Laize, V., Cancela, M. L. Fish as a model to assess chemical toxicity in bone. Aquatic Toxicology. 194, 208-226 (2018).
  14. Wang, L., et al. Role of GH/IGF axis in arsenite-induced developmental toxicity in zebrafish embryos. Ecotoxicology Environmental Safety. 201, 110820 (2020).
  15. Bergen, D. J. M., Kague, E., Hammond, C. L. Zebrafish as an emerging model for osteoporosis: a primary testing platform for screening new osteo-active compounds. Frontiers in Endocrinology. 10, 6 (2019).
  16. Charles, J. F., et al. Utility of quantitative micro-computed tomographic analysis in zebrafish to define gene function during skeletogenesis. Bone. 101, 162-171 (2017).
  17. Hammond, C. L., Moro, E. Using transgenic reporters to visualize bone and cartilage signaling during development in vivo. Frontiers in Endocrinology. 3, 91 (2012).
  18. Bensimon-Brito, A., et al. Revisiting in vivo staining with alizarin red S–a valuable approach to analyse zebrafish skeletal mineralization during development and regeneration. BMC Developmental Biology. 16, 2 (2016).

Play Video

Diesen Artikel zitieren
Ding, J., Yan, R., Wang, L., Yang, Q., Zhang, X., Jing, N., Wei, Y., Zhang, H., An, Y. Using Alizarin Red Staining to Detect Chemically Induced Bone Loss in Zebrafish Larvae. J. Vis. Exp. (178), e63251, doi:10.3791/63251 (2021).

View Video