Summary

In vitro Caracterização de Chaperones de Histonas utilizando Ensaios Analíticos, Pull-Down e Chaperoning

Published: December 29, 2021
doi:

Summary

Este protocolo descreve uma bateria de métodos que inclui cromatografia analítica de exclusão de tamanho para estudar a oligomerização e estabilidade da histona chaperona, ensaio pull-down para desvendar interações histona-histona-histona, AUC para analisar a estequiometria dos complexos proteicos e ensaio de chaperoning de histonas para caracterizar funcionalmente uma suposta histona chaperone in vitro.

Abstract

As proteínas histonas associam-se ao DNA para formar a cromatina eucariótica. A unidade básica da cromatina é um nucleossomo, composto por um octamero de histonas que consiste em duas cópias das histonas centrais H2A, H2B, H3 e H4, envolvidas pelo DNA. O octamero é composto por duas cópias de um dímero H2A/H2B e uma única cópia de um tetrâmero H3/H4. As histonas do núcleo altamente carregadas são propensas a interações inespecíficas com várias proteínas no citoplasma celular e no núcleo. As chaperonas de histona formam uma classe diversificada de proteínas que transportam histonas do citoplasma para o núcleo e auxiliam sua deposição no DNA, auxiliando assim o processo de montagem do nucleossomo. Algumas histonas acompanhantes são específicas para H2A/H2B ou H3/H4, e algumas funcionam como chaperonas para ambas. Este protocolo descreve como técnicas laboratoriais in vitro , como ensaios pull-down, cromatografia analítica de exclusão de tamanho, ultracentrifugação analítica e ensaio de chaperoning de histonas, podem ser usadas em conjunto para confirmar se uma determinada proteína é funcional como uma chaperona de histonas.

Introduction

Nucleossomos compostos de proteínas de DNA e histonas formam a unidade estrutural da cromatina e regulam vários eventos celulares críticos. Os nucleossomos são dinamicamente reposicionados e remodelados para tornar o DNA acessível a vários processos, como replicação, transcrição e tradução 1,2. As histonas altamente básicas tendem a interagir com proteínas ácidas no meio celular ou sofrem agregação, levando a vários defeitos celulares 3,4,5. Um grupo de proteínas dedicadas denominadas histonas chaperonas auxilia no transporte de histonas do citoplasma para o núcleo e previne eventos aberrantes de agregação histona-DNA 6,7. Fundamentalmente, a maioria das histonas acompanhantes armazena e transfere histonas para o DNA com força iônica fisiológica, auxiliando na formação de nucleossomos 8,9. Algumas histonas têm uma preferência definida pelos oligômeros de histonas H2A/H2B ou H3/H410.

As chaperonas de histona são caracterizadas com base em sua capacidade de montar nucleossomos dependentes ou independentes da síntese de DNA11. Por exemplo, o fator de montagem da cromatina-1 (CAF-1) é dependente, enquanto o regulador de histonas A (HIRA) é independente da síntese de DNA12,13. Da mesma forma, a família nucleoplasmina das histonas chaperonas está envolvida na descondensação da cromatina espermática e na montagem de nucleossomos14. Os membros da família da proteína de montagem de nucleossomos (NAP) facilitam a formação de estruturas semelhantes a nucleossomos in vitro e estão envolvidos no deslocamento de histonas entre o citoplasma e o núcleo15. As nucleoplasminas e as proteínas da família NAP são ambas chaperonas de histonas funcionais, mas não compartilham nenhuma característica estrutural. Essencialmente, nenhuma característica estrutural única permite a classificação de uma proteína como uma histona chaperona16. O uso de ensaios funcionais e biofísicos, juntamente com estudos estruturais, funciona melhor na caracterização de histonas acompanhantes.

Este trabalho descreve métodos bioquímicos e biofísicos para caracterizar uma proteína como uma chaperona de histonas que auxilia a montagem de nucleossomos. Primeiramente, foi realizada cromatografia analítica de exclusão de tamanho para analisar o estado oligomérico e a estabilidade das histonas chaperonas. Em seguida, um ensaio pull-down foi realizado para determinar as forças motrizes e a natureza competitiva das interações histona acompanhante-histona. No entanto, os parâmetros hidrodinâmicos dessas interações não puderam ser calculados com precisão usando cromatografia analítica de exclusão de tamanho devido à forma da proteína e seus complexos que afetam sua migração através da coluna. Para tanto, foi utilizada a ultracentrifugação analítica, que fornece propriedades macromoleculares em solução que incluem o peso molecular preciso, a estequiometria de interação e a forma das moléculas biológicas. Estudos anteriores utilizaram extensivamente o ensaio de chaperoning de histonas in vitro para caracterizar funcionalmente as chaperonas de histonas, como yScS116 17, DmACF18, ScRTT106p19, HsNPM120. O ensaio de chaperoning de histona também foi usado para caracterizar funcionalmente as proteínas como chaperonas de histonas.

Protocol

1. Cromatografia analítica de exclusão de tamanho para elucidar o estado oligomérico e a estabilidade das chaperonas de histonas Análise do estado oligomérico das histonas chaperonasEquilibrar uma coluna de cromatografia analítica de exclusão de tamanho (SEC) de 24 mL com 1,2 volume de coluna (CV), ou seja, 28,8 mL de tampão SEC desgaseificado [20 mM de Tris-HCl (pH 7,5), 300 de mM de NaCl e 1 mM de β-mercaptoetanol (β-ME)] a 4 °C (ver Tabela de Materiais).<b…

Representative Results

O domínio da nucleoplasmina N-terminal recombinante da proteína FKBP53 de Arabidopsis thaliana foi submetido à SEC analítica. O volume de pico de eluição foi plotado contra a curva padrão para identificar seu estado oligomérico. Os resultados analíticos da SEC revelaram que o domínio existe como pentâmero em solução, com massa molecular aproximada de 58 kDa (Figura 1A,B). Além disso, o domínio nucleoplasmina foi analisado quanto à estabilidade térmi…

Discussion

Este trabalho demonstra e valida um conjunto abrangente de protocolos para a caracterização bioquímica e biofísica de uma suposta histona acompanhante. Aqui, proteínas da família NAP recombinantemente expressas e purificadas, AtNRP1 e AtNRP2, e o domínio N-terminal nucleoplasmina de AtFKBP53 foram utilizados para demonstrar os protocolos. O mesmo conjunto de experimentos poderia muito bem ser usado para delinear os atributos funcionais de acompanhantes de histonas previamente descaracterizadas de qualquer organism…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

As subvenções extramuros a Dileep Vasudevan do Conselho de Pesquisa em Ciência e Engenharia, Governo da Índia [CRG/2018/000695/PS] e do Departamento de Biotecnologia, Ministério da Ciência e Tecnologia, Governo da Índia [BT/INF/22/SP33046/2019], bem como o apoio intramural do Instituto de Ciências da Vida, Bhubaneswar são muito reconhecidos. Agradecemos à Sra. Sudeshna Sen e à Sra. Annapurna Sahoo por sua ajuda com a preparação de histonas. As discussões com nossos colegas Dr. Chinmayee Mohapatra, Sr. Manas Kumar Jagdev e Dr. Shaikh Nausad Hossain também são reconhecidas.

Materials

Acetic acid (glacial) Sigma A6283
Acrylamide MP Biomedicals 814326
Agarose MP Biomedicals 193983
AKTA Pure 25M FPLC Cytiva 29018226 Instrument for protein purification
Ammonium persulfate (APS) Sigma A3678
An-60Ti rotor Beckman Coulter 361964 Rotor for analytical ultracentrifugation
Bovine serum albumin (BSA) Sigma A7030
Chloroform Sigma C2432
Coomassie brilliant blue R 250 Sigma 1.15444
Dialysis tubing (7 kDa cut-off) Thermo Fisher 68700 For dialysing protein samples
Dithiothreitol (DTT) MP Biomedicals 100597
DNA Loading Dye New England Biolabs B7025S
EDTA disodium salt MP Biomedicals 194822
Electronic balance Shimadzu ATX224R
Ethanol Sigma E7023
Ethidium bromide (EtBr) Sigma E8751
Gel Doc System Bio-Rad 12009077 For imaging gels after staining
Horizontal gel electrophoresis apparatus Bio-Rad 1704405 Instrument for agarose gel electrophoresis
Hydrochloric acid (HCl) Sigma 320331
Imidazole MP Biomedicals 102033
Magnesium chloride (MgCl2) Sigma M8266
Micropipettes Eppendorf Z683779 For pipetting of micro-volumes
Mini-PROTEAN electrophoresis system Bio-Rad 1658000 Instrument for SDS-PAGE
N,N-methylene-bis-acrylamide MP Biomedicals 800172
Nano drop Thermo Fisher ND-2000 For measurement of protein and DNA concentrations
Ni-NTA agarose Invitrogen R901-15 Resin beads for pull-down assay
Optima AUC analytical ultracentrifuge Beckman Coulter B86437 Instrument for analytical ultracentrifugation
pH Meter Mettler Toledo MT30130863
Phenol Sigma P4557
Plasmid isolation kit Qiagen 27104
Proteinase K Sigma-Aldrich 1.07393
pUC19 Thermo Fisher SD0061 Plasmid for supercoiling assay
Refrigerated high-speed centrifuge Thermo Fisher 75002402
SDS-PAGE protein marker Bio-Rad 1610317
SEDFIT Free software program for analytical ultracentrifugation data analysis
SEDNTERP Free software program to estimate viscosity and density of buffer and partial specific volume of a protein
SigmaPrep Spin Columns Sigma SC1000 For pull-down assay
Sodium acetate Sigma S2889
Sodium chloride (NaCl) Merck S9888
Sodium dodecyl sulfate (SDS) MP Biomedicals 102918
Superdex 200 Increase 10/300 GL Cytiva 28990944 Column for analytical size-exclusion chromatography
Superdex 75 Increase 10/300 GL Cytiva 29148721 Column for analytical size-exclusion chromatography
TEMED Sigma 1.10732
Topoisomerase I Inspiralis WGT102 Enzyme used in plasmid supercoiling assay
Tris base Merck T1503
Tween-20 Sigma P1379
Urea MP Biomedicals 191450
Water bath Nüve NB 5 For heat treatment of protein samples
β-mercaptoethanol (β-ME) Sigma M6250

Referenzen

  1. Hübner, M. R., Eckersley-Maslin, M. A., Spector, D. L. Chromatin organization and transcriptional regulation. Current Opinion in Genetics and Development. 23 (2), 89-95 (2013).
  2. Lai, W. K. M., Pugh, B. F. Understanding nucleosome dynamics and their links to gene expression and DNA replication. Nature Reviews Molecular Cell Biology. 18 (9), 548-562 (2017).
  3. Kim, U. J., Han, M., Kayne, P., Grunstein, M. Effects of histone H4 depletion on the cell cycle and transcription of Saccharomyces cerevisiae. EMBO Journal. 7 (7), 2211-2219 (1988).
  4. Prado, F., Aguilera, A. Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Molecular and Cellular Biology. 25 (4), 1526-1536 (2005).
  5. Meeks-Wagner, D., Hartwell, L. H. Normal stoichiometry of histone dimer sets is necessary for high fidelity of mitotic chromosome transmission. Cell. 44 (1), 43-52 (1986).
  6. Groth, A., et al. Human Asf1 regulates the flow of S phase histones during replicational stress. Molecular Cell. 17 (2), 301-311 (2005).
  7. Laskey, R. A., Honda, B. M., Mills, A. D., Finch, J. T. Nucleosomes are assembled by an acidic protein which binds histones and transfers them to DNA. Nature. 275 (5679), 416-420 (1978).
  8. Das, C., Tyler, J. K., Churchill, M. E. A. The histone shuffle: histone chaperones in an energetic dance. Trends in Biochemical Sciences. 35 (9), 476-489 (2010).
  9. Akey, C. W., Luger, K. Histone chaperones and nucleosome assembly. Current Opinion in Structural Biology. 13 (1), 6-14 (2003).
  10. De Koning, L., Corpet, A., Haber, J. E., Almouzni, G. Histone chaperones: An escort network regulating histone traffic. Nature Structural and Molecular Biology. 14 (11), 997-1007 (2007).
  11. Eitoku, M., Sato, L., Senda, T., Horikoshi, M. Histone chaperones: 30 years from isolation to elucidation of the mechanisms of nucleosome assembly and disassembly. Cellular and Molecular Life Sciences. 65 (3), 414-444 (2008).
  12. Quivy, J. P., Grandi, P., Almouzni, G. Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO Journal. 20 (8), 2015-2027 (2001).
  13. Ray-Gallet, D., et al. HIRA is critical for a nucleosome assembly pathway independent of DNA synthesis. Molecular Cell. 9 (5), 1091-1100 (2002).
  14. Frehlick, L. J., Eirín-López, J. M., Ausió, J. New insights into the nucleophosmin/nucleoplasmin family of nuclear chaperones. Bioessays. 29 (1), 49-59 (2007).
  15. Ito, T., Bulger, M., Kobayashi, R., Kadonaga, J. T. Drosophila NAP-1 is a core histone chaperone that functions in ATP-facilitated assembly of regularly spaced nucleosomal arrays. Molecular and Cellular Biology. 16 (6), 3112-3124 (1996).
  16. Elsässer, S. J., D’Arcy, S. Towards a mechanism for histone chaperones. Biochimica et Biophysica Acta. 1819 (3-4), 211-221 (2013).
  17. Rodríguez-Campos, A., Koop, R., Faraudo, S., Beato, M. Transcriptionally competent chromatin assembled with exogenous histones in a yeast whole cell extract. Nucleic Acids Research. 32 (13), 111 (2004).
  18. Levenstein, M. E., Kadonaga, J. T. Biochemical analysis of chromatin containing recombinant Drosophila core histones. Journal of Biological Chemistry. 277 (10), 8749-8754 (2002).
  19. Huang, S., et al. Rtt106p is a histone chaperone involved in heterochromatin-mediated silencing. Proceedings of the National Academy of Sciences of the United States of America. 102 (38), 13410-13415 (2005).
  20. Swaminathan, V., Kishore, A. H., Febitha, K. K., Kundu, T. K. Human histone chaperone nucleophosmin enhances acetylation-dependent chromatin transcription. Molecular and Cellular Biology. 25 (17), 7534-7545 (2005).
  21. Singh, A. K., Datta, A., Jobichen, C., Luan, S., Vasudevan, D. AtFKBP53: A chimeric histone chaperone with functional nucleoplasmin and PPIase domains. Nucleic Acids Research. 48 (3), 1531-1550 (2020).
  22. Scofield, B. T. K. H. . Protein Electrophoresis. , (2012).
  23. Andrew, S. M., Titus, J. A., Zumstein, L. Dialysis and concentration of protein solutions. Current Protocols in Toxicology, Appendix 3. , 1-5 (2002).
  24. Balbo, A., Zhao, H., Brown, P. H., Schuck, P. Assembly, loading, and alignment of an analytical ultracentrifuge sample cell. Journal of Visualized Experiments. (33), e1530 (2009).
  25. Padavannil, A., Brautigam, C. A., Chook, Y. M. Molecular size analysis of recombinant importin-histone complexes using analytical ultracentrifugation. Bio-protocol. 10 (10), 3625 (2019).
  26. Zhao, H., Brautigam, C. A., Ghirlando, R., Schuck, P. Overview of current methods in sedimentation velocity and sedimentation equilibrium analytical ultracentrifugation. Current Protocols in Protein Science. , (2013).
  27. Schuck, P. Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and Lamm equation modelling. Biophysical Journal. 78 (3), 1606-1619 (2000).
  28. Kumar, A., Kumar Singh, A., Chandrakant Bob de, R., Vasudevan, D. Structural characterization of Arabidopsis thaliana NAP1-related protein 2 (AtNRP2) and comparison with its homolog AtNRP1. Molecules. 24 (12), 2258 (2019).
  29. Liu, W. H., Roemer, S. C., Port, A. M., Churchill, M. E. A. CAF-1-induced oligomerization of histones H3/H4 and mutually exclusive interactions with Asf1 guide H3/H4 transitions among histone chaperones and DNA. Nucleic Acids Research. 45 (16), 9809 (2017).
  30. Bowman, A., et al. The histone chaperones Vps75 and Nap1 form ring-like, tetrameric structures in solution. Nucleic Acids Research. 42 (9), 6038-6051 (2014).
  31. Newman, E. R., et al. Large multimeric assemblies of nucleosome assembly protein and histones revealed by small-angle X-ray scattering and electron microscopy. Journal of Biological Chemistry. 287 (32), 26657-26665 (2012).
  32. Edlich-Muth, C., et al. The pentameric nucleoplasmin fold is present in Drosophila FKBP39 and a large number of chromatin-related proteins. Journal of Molecular Biology. 427 (10), 1949-1963 (2015).
  33. Franco, A., et al. Structural insights into the ability of nucleoplasmin to assemble and chaperone histone octamers for DNA deposition. Scientific Reports. 9 (1), 9487 (2019).
  34. Xiao, H., Jackson, V., Lei, M. The FK506-binding protein, Fpr4, is an acidic histone chaperone. FEBS Letters. 580 (18), 4357-4364 (2006).
  35. Graziano, G. Role of hydrophobic effect in the salt-induced dimerization of bovine beta-lactoglobulin at pH 3. Biopolymers. 91 (12), 1182-1188 (2009).
  36. Burgess, R. J., Zhang, Z. Histone chaperones in nucleosome assembly and human disease. Nature Structural and Molecular Biology. 20 (1), 14-22 (2013).
  37. Donham, D. C., Scorgie, J. K., Churchill, M. E. The activity of the histone chaperone yeast Asf1 in the assembly and disassembly of histone H3/H4-DNA complexes. Nucleic Acids Research. 39 (13), 5449-5458 (2011).
  38. Avvakumov, N., Nourani, A., Côté, J. Histone chaperones: Modulators of chromatin marks. Molecular Cell. 41 (5), 502-514 (2011).
  39. Ransom, M., Dennehey, B. K., Tyler, J. K. Chaperoning histones during DNA replication and repair. Cell. 140 (2), 183-195 (2010).
  40. Chu, X., et al. Importance of electrostatic interactions in the association of intrinsically disordered histone chaperone Chz1 and histone H2A.Z-H2B. PLoS Computational Biology. 8 (7), 1002608 (2012).
  41. Heidarsson, P. O., et al. Disordered proteins enable histone chaperoning on the nucleosome. bioRxiv. , (2020).

Play Video

Diesen Artikel zitieren
Bobde, R. C., Saharan, K., Baral, S., Gandhi, S., Samal, A., Sundaram, R., Kumar, A., Singh, A. K., Datta, A., Vasudevan, D. In Vitro Characterization of Histone Chaperones using Analytical, Pull-Down and Chaperoning Assays. J. Vis. Exp. (178), e63218, doi:10.3791/63218 (2021).

View Video