Wir stellen den Prozess der Isolierung, Vermehrung und Charakterisierung von Kohlenwasserstoff-abbauenden Bakterien aus aquatischen Lebensräumen vor. Das Protokoll beschreibt die Isolierung von Bakterien, die Identifizierung mit der 16S-rRNA-Methode und die Prüfung ihres Kohlenwasserstoffabbaupotenzials. Dieser Artikel würde Forschern helfen, die mikrobielle Biodiversität in Umweltproben zu charakterisieren und insbesondere nach Mikroben mit Bioremediationspotenzial zu suchen.
Kohlenwasserstoff-Schadstoffe sind widerspenstig gegenüber dem Abbau und ihre Anreicherung in der Umwelt ist giftig für alle Lebensformen. Bakterien kodieren zahlreiche katalytische Enzyme und sind von Natur aus in der Lage, Kohlenwasserstoffe zu verstoffwechseln. Wissenschaftler nutzen die Artenvielfalt in aquatischen Ökosystemen, um Bakterien mit biologischem Abbau- und Bioremediationspotenzial zu isolieren. Solche Isolate aus der Umwelt bieten eine Vielzahl von Stoffwechselwegen und Enzymen, die weiter genutzt werden können, um den Abbauprozess im industriellen Maßstab zu skalieren. In diesem Artikel skizzieren wir den allgemeinen Prozess der Isolierung, Vermehrung und Identifizierung von Bakterienarten aus aquatischen Lebensräumen und untersuchen ihre Fähigkeit, Kohlenwasserstoffe als einzige Kohlenstoffquelle in vitro mit einfachen Techniken zu nutzen. Das vorliegende Protokoll beschreibt die Isolierung verschiedener Bakterienarten und deren anschließende Identifizierung mittels der 16S rRNA-Analyse. Das Protokoll enthält auch Schritte zur Charakterisierung des Kohlenwasserstoffabbaupotenzials von Bakterienisolaten. Dieses Protokoll wird für Forscher nützlich sein, die versuchen, Bakterienarten aus Umwelthabitaten für ihre biotechnologischen Anwendungen zu isolieren.
Kohlenwasserstoffe (HC) werden sowohl als Kraftstoffe als auch in chemischen Anwendungen in großem Umfang eingesetzt. Aromatische Kohlenwasserstoffe wie Benzol, Toluol und Xylol werden häufig als Lösungsmittel verwendet1. Alkene wie Ethylen und Propylen dienen als Vorläufer bei der Synthese von Polyethylen- bzw. Polypropylenpolymeren. Durch die Polymerisation eines anderen Kohlenwasserstoffs, Styrol, entsteht Polystyrol. Anthropogene Aktivitäten bringen Kohlenwasserstoffe während ihrer Produktion und ihres Transports in die Umwelt ein. Die Kontamination von Boden und Wasser durch Kohlenwasserstoffe ist für die Umwelt und die menschliche Gesundheit sehr besorgniserregend. Mikroben spielen eine wichtige Rolle bei der Erhaltung des Ökosystems, indem sie die biogeochemischen Kreisläufe regulieren und eine breite Palette von Substraten, zu denen auch Schadstoffe und Xenobiotika gehören, nutzen und sie in Kohlenstoff und Energiequelle umwandeln. Dieser Prozess der Entgiftung von Umweltschadstoffen durch Mikroorganismen wird als Bioremediation 3,4,5,6,7 bezeichnet.
Mikroorganismen mit der Fähigkeit, Kohlenwasserstoffe abzubauen, kommen in aquatischen und bodenständigen Lebensräumen vor 8,9,10. Es wurden viele Bakterien identifiziert, die das Potenzial haben, Alkane und aromatische HCs abzubauen, wie z. B. Pseudomonas, Acinetobacter, Rhodococcus, Marinobacter und Oleibacter11. Die Entwicklung technologisch fortschrittlicher kulturunabhängiger Ansätze hat dazu beigetragen, neuartige HC-abbauende mikrobielle Gemeinschaften zu entdecken12. Genomisches Material, das direkt aus Quellproben isoliert wurde, wird durch Hochdurchsatzmethoden wie Next Generation Sequencing (NGS) amplifiziert und sequenziert, gefolgt von einer Analyse, so dass keine Mikroorganismen kultiviert werden müssen. NGS-Methoden, wie z. B. die Metagenomanalyse, sind teuer und leiden unter Nachteilen im Zusammenhang mit dem Amplifikationsprozess13. Kultivierungstechniken wie die selektive Anreicherungskultur14, die auf die Isolierung von Kohlenwasserstoff-abbauenden Mikroben abzielen, sind nach wie vor nützlich, da sie es Forschern ermöglichen, Stoffwechselwege in Bakterienisolaten zu untersuchen und zu manipulieren.
Die genomische DNA-Isolierung und die anschließende Sequenzierung des genomischen Materials liefert wertvolle Informationen über jeden Organismus. Die Sequenzierung des gesamten Genoms hilft bei der Identifizierung von Genen, die für Antibiotikaresistenzen, potenzielle Wirkstoffziele, Virulenzfaktoren, Transporter, xenobiotische metabolisierende Enzyme usw. kodieren15,16,17. Die Sequenzierung des 16SrRNA-kodierenden Gens hat sich als robuste Technik zur Identifizierung der bakteriellen Phylogenie erwiesen. Die Konservierung der Gensequenz und -funktion über die Jahre macht es zu einem zuverlässigen Werkzeug, um unbekannte Bakterien zu identifizieren und ein Isolat mit der nächstgelegenen Art zu vergleichen. Darüber hinaus ist die Länge dieses Gens optimal für die bioinformatische Analyse18. All diese Eigenschaften, zusammen mit der einfachen Genamplifikation mit universellen Primern und der Verbesserung der Gensequenzierungstechnologie, machen es zu einem Goldstandard für die Identifizierung von Mikroben.
Hier beschreiben wir ein Verfahren zur Rückgewinnung kultivierbarer Mikroorganismen mit HC-abbauendem Potenzial aus Umweltproben. Die im Folgenden beschriebene Methode beschreibt die Sammlung und Identifizierung von HC-abbauenden Bakterien und ist in fünf Abschnitte unterteilt: (1) Sammlung von Bakterien aus Wasserproben, (2) Isolierung von Reinkulturen, (3) Untersuchung der HC-abbauenden Fähigkeit von Bakterienisolaten, (4) genomische DNA-Isolierung und (5) Identifizierung auf der Grundlage von 16S rRNA-Gensequenzierung und BLAST-Analyse. Dieses Verfahren kann zur Isolierung von Bakterien für viele verschiedene biotechnologische Anwendungen angepasst werden.
Es ist allgemein bekannt, dass nur etwa 1 % der Bakterien auf der Erde ohne weiteres im Labor kultiviert werdenkönnen 6. Selbst unter den kultivierbaren Bakterien bleiben viele uncharakterisiert. Verbesserungen in molekularen Methoden haben der Analyse und Bewertung von Bakteriengemeinschaften eine neue Dimension verliehen. Solche Techniken haben jedoch ihre Grenzen, aber sie machen die Kulturanalysen nicht überflüssig. Reinkulturtechniken zur Isolierung einzelner Bakterienarten sind nach wie v…
The authors have nothing to disclose.
Wir danken Dr. Karthik Krishnan und den Mitgliedern des RP-Labors für ihre hilfreichen Kommentare und Anregungen. DS wird durch das SNU-Doctoral Fellowship und das Earthwatch Institute India Fellowship unterstützt. Das RP-Labor wird durch ein CSIR-EMR-Stipendium und Start-up-Mittel der Shiv Nadar University unterstützt.
Agarose | Sigma-Aldrich | A4718 | Gel electrophoresis |
Ammonium chloride (NH4Cl) | Sigma-Aldrich | A9434 | Growth medium component |
Ammonium sulphate | Sigma-Aldrich | A4418 | Growth medium component |
Bacto-Agar | Millipore | 1016141000 | Solid media preparation |
Calcium chloride (CaCl2) | MERCK | C4901-500G | Growth medium component |
Catechol | Sigma-Aldrich | 135011 | Hydrocarbon degradation assay |
Cetyltrimethylammonium bromide, CTAB | Sigma-Aldrich | H6269 | Genomic DNA Isolation |
Chloroform | HIMEDIA | MB109 | Genomic DNA isolation |
Disodium phosphate (Na2HPO4) | Sigma-Aldrich | S5136 | Growth medium component |
EDTA | Sigma-Aldrich | E9884 | gDNA buffer component |
Ferrous sulphate, heptahydrate (FeSO4.7H20) | Sigma-Aldrich | 215422 | Growth medium component |
Glucose | Sigma-Aldrich | G7021 | Growth medium component |
Glycerol | Sigma-Aldrich | G5516 | Growth medium component; Glycerol stocks |
Isopropanol | HIMEDIA | MB063 | Genomic DNA isolation |
LB Agar | Difco | 244520 | Growth medium |
Luria-Bertani (LB) | Difco | 244620 | Growth medium |
Magnesium sulphate (MgSO4) | MERCK | M2643 | Growth medium component |
Manganese (II) sulfate monohydrate (MnSO4.H20) | Sigma-Aldrich | 221287 | Growth medium component |
Nutrient Broth (NB) | Merck (Millipore) | 03856-500G | Growth medium |
Peptone | Merck | 91249-500G | Growth medium component |
Phenol | Sigma-Aldrich | P1037 | Genomic DNA isolation |
Potassium phosphate, dibasic (K2HPO4) | Sigma-Aldrich | P3786 | Growth medium component |
Potassium phosphate, monobasic (KH2PO4) | Sigma-Aldrich | P9791 | Growth medium component |
Proteinase K | ThermoFisher Scientific | AM2546 | Genomic DNA isolation |
QIAquick Gel Extraction kit | QIAGEN | 160016235 | DNA purification |
QIAquick PCR Purification kit | QIAGEN | 163038783 | DNA purification |
R2A Agar | Millipore | 1004160500 | Growth medium |
SmartSpec Plus Spectrophotometer | BIO-RAD | 4006221 | Absorbance measurement |
Sodium acetate | Sigma-Aldrich | S2889 | Genomic DNA isolation |
Sodium chloride (NaCl) | Sigma-Aldrich | S9888 | Growth medium component |
Sodium dodecyl sulphate (SDS) | Sigma-Aldrich | L3771 | Genomic DNA isolation |
Styrene | Sigma-Aldrich | S4972 | Styrene biodegradation |
Taq DNA Polymerase | NEB | M0273X | 16s rRNA PCR |
Tris-EDTA (TE) | Sigma-Aldrich | 93283 | Resuspension of genomic DNA |
Tryptic Soy Broth (TSB) | Merck | 22092-500G | Growth medium |
Yeast extract | Sigma-Aldrich | Y1625-1KG | Growth medium component |
Zinc sulfate heptahydrate (ZnSO4.7H20) | Sigma-Aldrich | 221376 | Growth medium component |