Этот протокол описывает использование коммерческих наборов для экспрессии внеклеточных белков для производства мембранных белков, поддерживаемых в нанодиске, которые могут быть использованы в качестве антигенов в субъединичных вакцинах.
Субъединичные вакцины имеют преимущества по сравнению с более традиционными инактивированными или аттенуированными вакцинами цельноклеточного происхождения в отношении безопасности, стабильности и стандартного производства. Для получения эффективной субъединичной вакцины на основе белка белковый антиген часто должен принимать нативную конформацию. Это особенно важно для поверхностных антигенов патогена, которые представляют собой мембраносвязанные белки. Бесклеточные методы были успешно использованы для получения правильно свернутого функционального мембранного белка путем котрансляции частиц нанолипопротеинов (NLP), широко известных как нанодиски.
Эта стратегия может быть использована для производства субъединичных вакцин, состоящих из мембранных белков в липидно-связанной среде. Однако производство бесклеточного белка часто ограничивается небольшими масштабами (<1 мл). Количество белка, производимого в небольших производственных циклах, обычно достаточно для биохимических и биофизических исследований. Тем не менее, бесклеточный процесс должен быть масштабирован, оптимизирован и тщательно протестирован, чтобы получить достаточное количество белка для исследований вакцины на животных моделях. Другие процессы, связанные с производством вакцин, такие как очистка, добавление адъювантов и лиофилизация, должны быть оптимизированы параллельно. В этом документе сообщается о разработке расширенного протокола экспрессии, очистки и составления мембранно-связанной белковой субъединичной вакцины.
Масштабные внеклеточные реакции требуют оптимизации концентраций и соотношений плазмид при использовании нескольких векторов экспрессии плазмид, селекции липидов и адъювантного добавления для высокоуровневого производства формулированных частиц нанолипопротеинов. Метод демонстрируется здесь с экспрессией основного белка внешней мембраны хламидия (MOMP), но может быть широко применен к другим антигенам мембранных белков. Эффективность антигена может быть оценена in vivo с помощью исследований иммунизации для измерения выработки антител, как показано здесь.
Прокариотические или эукариотические лизаты для бесклеточной экспрессии белков легко доступны в качестве коммерческих продуктов для синтеза интересующих белков (полный обзор см. в разделе 1). Эти системы экспрессии доступны в различных масштабах и используют лизаты различных организмов, включая кишечную палочку, растения табака и культуры млекопитающих. Бесклеточные лизаты обладают множеством преимуществ по сравнению с традиционными подходами к производству рекомбинантных белков, включая простоту использования и надежное и быстрое производство белка. В то время как эти подходы в основном используются для получения растворимых белков, эта группа стала пионером в их использовании для экспрессии мембранных белков.
Этот новый подход вносит незначительные изменения в существующие системы бесклеточной экспрессии, включая ДНК, кодирующую два белковых продукта для экспрессии: аполипопротеин и мембранный белок, представляющий интерес. Экспрессируемый аполипопротеин (производные ApoA1 или ApoE4) взаимодействует с липидами, добавленными к бесклеточному лизату, для спонтанной сборки (~20 нм) NLP. При совместном переводе с интересующим нас мембранным белком НЛП и мембранный белок образуют растворимый комплекс наночастиц, в котором мембранный белок встроен в липидный бислой НЛП. Таким образом, мембранный белок более доступен для последующих применений, поскольку он содержится в растворимых дискретных частицах. Этот подход позволяет продуцировать функциональные олигомерные белковые комплексы в бислоеNLP 2 и производить антигенный компонент субъединичной вакцины, который впоследствии смешивают с липофильными адъювантами с образованием вакцины на основе наночастиц с совместно локализованным антигеном и адъювантом, пригодным для оценки in vivo .
Этот текущий метод является модификацией ранее опубликованного протокола3. Основные модификации направлены на масштабирование внеклеточной реакции и последующую очистку комплекса белок-НЛП. Дальнейшая модификация включает в себя добавление амфифильного полимера, известного как телодендример, который сначала смешивается с липидами, а затем добавляется к внеклеточной реакции. Котрансляция плазмид в присутствии телодендримера и липидов приводит к образованию телодендримерного НЛП (тНЛП). Добавление телодендримера также помогает модулировать размер и монодисперсность полученных наночастиц tNLP4. Этот протокол специально оптимизирован для крупномасштабных исследований вакцин с целью получения связанного с мембраной белка-субъединичного антигена, хламидийного MOMP 5,6. Метод позволяет получить рекомбинантный MOMP, ассоциированный с tNLP, с образованием высокорастворимого комплекса MOMP-tNLP, который сохраняет олигомеризацию MOMP. Типичное производство объемом 3 мл позволяет получить >1,5 мг очищенного MOMP. Бесклеточный, продуцируемый MOMP-tNLP поддается быстрому добавлению адъюванта для тестирования иммуногенности in vivo.
Хламидиоз является наиболее распространенной инфекцией, передающейся половым путем, которая поражает как мужчин, так и женщин. Несмотря на то, что исследования вакцины против хламидиоза длятся десятилетиями, безопасная и эффективная вакцина, которую можно было бы масштабировать до массового производства, остается труднодостижимой13. Хламидийный MOMP считается ведущим кандидатом в качестве защитного вакцинного антигена; однако MOMP обладает высокой гидрофобностью и склонен к неправильному складыванию14,15. Дальнейшие исследования показали, что MOMP существует в олигомерных состояниях, которые необходимы для его иммуногенности11. Здесь подробно описан валидированный метод бесклеточной коэкспрессии, который производит олигомерный MOMP, образующийся в наночастице tNLP в качестве вакцины, с выходом примерно 1,5 мг очищенного MOMP на 3 мл лизата. Эта полностью упорядоченная процедура может быть в дальнейшем масштабирована для промышленного производства, что повысит ее перспективы в качестве полезного подхода к созданию вакцин.
Ранее мы публиковали работы об использовании бесклеточной экспрессии для получения мембранных белков, встроенных в NLP 3,16, а также экспрессии в диски, стабилизированные телодендримерами. Однако этот последний метод позволил получить мембранно-белковые частицы с большей гетерогенностью и меньшей растворимостью. 4 Кроме того, иммуногенность частиц MOMP-телодендримера неясна по сравнению с частицами MOMP-tNLP6.
Эта процедура может быть адаптирована для увеличения экспрессии бактериальных мембранных белков, которые являются перспективными кандидатами в качестве антигенов для использования в субъединичных вакцинах. Эта процедура не только производит солюбилизированный бактериальный мембранный белок, но и общая структура наночастиц поддается дальнейшей модификации с использованием различных липофильных вакцинных адъювантов, включая, помимо прочего, CpG, конъюгированный с фрагментом холестерина или FSL-1. Экспрессия других антигенов-кандидатов из бактерий возможна, хотя для достижения оптимальных выходов может потребоваться изучение таких параметров, как температура экспрессии, выбор липидов и тип системы экспрессии.
Кроме того, выбор и соотношение плазмид имеют решающее значение в этом процессе. Обе используемые плазмиды должны быть построены из одного и того же каркаса. Если вставки имеют примерно одинаковую длину, соотношения могут быть основаны на массе добавленной плазмиды, как описано здесь. Тем не менее, соотнесение на основе кротов даст более воспроизводимые результаты, особенно при масштабировании реакций. Соотношения, которые хорошо работают в реакциях масштаба экрана (< 0,5 мл), могут быть неприменимы к более крупным реакциям и могут потребовать дополнительной оптимизации. Немембранные белки все еще могут быть экспрессированы с помощью бесклеточных наборов, но могут не требовать липидных наночастиц (коэкспрессия) для получения растворимого продукта. Кроме того, несмотря на то, что в этом протоколе описывается адъювантирование с помощью CpG и FSL-1, эта система поддается составлению с другими липофильными адъювантами или смешиванию с растворимыми адъювантами по желанию.
Важно избегать контаминации при постановке реакции бесклеточной экспрессии, так как это может повлиять на выход. Любые добавки к реакции, в том числе и сами плазмиды, должны быть высокой чистоты. Кроме того, экспрессируемые белки должны контактировать только с материалами и растворами, свободными от загрязнения эндотоксинами. Контаминация эндотоксинами в препаратах-кандидатах может привести к противоречивым и ложным результатам иммунологических анализов и может быть вредной в достаточных количествах. Хотя это и не описано здесь, дополнительная очистка после хроматографии сродства никеля может потребоваться, если на последующих этапах анализа, например, с помощью SDS-PAGE, обнаруживается много загрязняющих веществ. Это может быть достигнуто с помощью SEC, хотя условия могут потребовать оптимизации на основе каждой рецептуры.
The authors have nothing to disclose.
Эта работа была поддержана грантом Службы общественного здравоохранения R21 AI20925 и AI144184 U19 от Национального института аллергии и инфекционных заболеваний. Работа выполнена под эгидой Министерства энергетики США Ливерморской национальной лабораторией им. Лоуренса по контракту DE-AC52-07NA27344 [LLNL-JRNL-822525, LLNL-VIDEO-832788].
1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) as powder | Avanti Polar Lipids | 850345 | |
1.5 mL endotoxin-free centrifuge tubes | Eppendorf | 2600028 | |
1 M Trizma hydrochloride solution | Millipore Sigma | T2194 | |
Acetic acid, glacial, ACS reagent, ≥99.7% | Millipore Sigma | 695092 | |
Bio-Dot apparatus | Bio-Rad | 1706545 | |
Buffer Dam for XCell SureLock | Life Technologies | EI0012 | |
C24 Incubator shaker | New Brunswick Scientific | ||
Cell-Free Expression System: RTS 500 ProteoMaster E. coli HY Kit | BiotechRabbit | BR1400201 | |
cOmplete His-Tag Purification Resin | Roche Molecular Diagnostics | 5893682001 | |
cOmplete, EDTA-free Protease Inhibitor Cocktail | Roche Molecular Diagnostics | 4693132001 | |
CpG-ODN1826 | Biosearch Technologies | T9449 | |
D-(+)-Trehalose dihydrate | Millipore Sigma | 71509 | |
Dialysis tubes D-Tube Dialyzer Maxi | Millipore Sigma | 71508-3 | |
Disposable, polypropylene fritted columns 10 mL capacity | Bio-Rad | 7311550EDU | |
Dulbecco’s Phosphate-buffered Saline (PBS) | Millipore Sigma | D8537 | |
Electrophoresis Power Supply | |||
Endosafe PTS cartridge | Thermo Fisher Scientific | NC9594798 | |
Endosafe-PTS Testing System | Charles River | ||
Gel wash solution: 10% methanol, 7% acetic acid | |||
HCl and NaOH solutions for pH adjustment | |||
HPLC with UV-vis diode array detector | Shimadzu | ||
HyClone HyPure culture-grade water | VWR | 82007-328 | |
iBlot 2 Dry Blotting System | Life Technologies | ||
iBlot 2 Transfer Stacks, PVDF | Life Technologies | IB24001 | |
Image Studio V2.0 software | Li-COR Biiosciences | ||
Imidazole | Millipore Sigma | I5513 | |
Immun-Blot PVDF Membrane | Bio-Rad | 1620177 | |
LI-COR Odyssey Fc imager | Li-COR Biiosciences | ||
Lyophilizer | Labconco | ||
Methanol (≥99.9%) | Millipore Sigma | 34860 | |
Microcentrifuge | |||
Microwave oven | |||
NanoDrop One/OneC Microvolume UV-Vis Spectrophotometer | Thermo Fisher Scientific | ND-ONE-W | |
NuPAGE 4 to 12%, Bis-Tris, 1.0 mm | Life Technologies | NP0321 | |
NuPAGE LDS Sample Buffer (4x) | Life Technologies | NP0007 | |
NuPAGE MES SDS Running Buffer (20x) | Life Technologies | NP000202 | |
NuPAGE Sample Reducing Agent (10x) | Life Technologies | NP0009 | |
Odyssey Blocking Buffer in TBS containing 0.2% Tween 20 | Li-COR Biosciences | 927-50000 | |
Orbital Shaker | |||
PBS-T (1x PBS, 0.2% Tween 20, pH 7.4) | |||
PEG5K-CA8 Telodendrimer (custom synthesis product) | |||
pIVEX2.4d vector | Roche Molecular Diagnostics | ||
Plasmid Maxi Kit | Qiagen | 12162 | |
Primary antibody: MAb40 (monoclonal antibody to the variable domain 1 (VD1) of C. muridarum MOMP, de la Maza laboratory)4 | |||
Primary antibody: MAbHIS, Penta-His antibody | Qiagen | 34660 | |
Probe sonicator | |||
Qubit 3.0 Fluorometer | Life Technologies | Q33216 | |
Qubit Protein Assay Kit | Life Technologies | Q33212 | |
Rainin Pipette tips: LTS 1000 µL | Rainin | 17002428 | |
Rainin Pipette tips: LTS 20 µL | Rainin | 17002429 | |
Rainin Pipette tips: LTS 200 µL | Rainin | 17002426 | |
Rainin Pipettes | Rainin | ||
Secondary antibody: IRDye 800CW goat (polyclonal) anti-mouse IgG (heavy and light) | Li-COR Biosciences | 926-32210 | |
SeeBlue Plus2 Pre-stained Protein Standard | Life Technologies | LC5925 | |
Sodium chloride NaCl | Millipore Sigma | S7653 | |
Sodium phosphate monobasic NaH2PO4 | Millipore Sigma | S0751 | |
Superdex 200, 5/150 GL column | Cytiva | GE28-9909-45 | |
Synthetic diacylated lipoprotein-TLR2/6 FSL-1 | Invivogen | tlrl-fsl | |
SYPRO Ruby Protein Gel Stain | Life Technologies | S12001 | |
TWEEN 20 | Millipore Sigma | P1379 | |
UV light source | |||
Vacufuge Bench Top Centrifuge | Eppendorf | ||
Vortexer | |||
VWR 15 mL conicals (89039-666) | VWR | ||
VWR 50 mL conicals (89039-656) | VWR | ||
XCell SureLock Mini-Cell (Life Technologies ) | Life Technologies | EI0001 |