L’obiettivo di questo protocollo è quello di dirigere l’adesione e la crescita cellulare verso aree mirate di griglie per la crio-microscopia elettronica. Ciò si ottiene applicando uno strato antivegetativo che viene ablato in modelli specificati dall’utente seguito dalla deposizione di proteine della matrice extracellulare nelle aree modellate prima della semina cellulare.
La tomografia crioelettronica a cellule intere (cryo-ET) è una potente tecnologia che viene utilizzata per produrre strutture di risoluzione a livello nanometrico di macromolecole presenti nel contesto cellulare e conservate in uno stato congelato-idratato quasi nativo. Tuttavia, ci sono sfide associate alla coltivazione e / o all’adesione delle cellule su griglie TEM in un modo che è adatto per la tomografia mantenendo le cellule nel loro stato fisiologico. Qui, viene presentato un protocollo dettagliato passo-passo sull’uso del micropatterning per dirigere e promuovere la crescita delle cellule eucariotiche sulle griglie TEM. Durante il micropatterning, la crescita cellulare è diretta depositando proteine della matrice extracellulare (ECM) all’interno di schemi e posizioni specificati sulla lamina della griglia TEM mentre le altre aree rimangono rivestite con uno strato antivegetativo. La flessibilità nella scelta del rivestimento superficiale e del design del modello rende il micropatterning ampiamente applicabile per una vasta gamma di tipi di celle. Il micropatterning è utile per lo studio delle strutture all’interno delle singole cellule e per sistemi sperimentali più complessi come le interazioni ospite-patogeno o le comunità multicellulari differenziate. La micropatterning può anche essere integrata in molti flussi di lavoro crio-ET a cellule intere a valle, tra cui la microscopia correlata a luce ed elettroni (cryo-CLEM) e la fresatura a fascio di ioni focalizzati (cryo-FIB).
Con lo sviluppo, l’espansione e la versatilità della microscopia crioelettronica (cryo-EM), i ricercatori hanno esaminato una vasta gamma di campioni biologici in uno stato quasi nativo da macromolecolare (~ 1 nm) ad alta risoluzione (~ 2 Å). Le tecniche di crio-EM a singola particella e di diffrazione elettronica sono meglio applicate a macromolecole purificate in soluzione o in uno stato cristallino, rispettivamente1,2. Mentre la tomografia crioelettronica (cryo-ET) è particolarmente adatta per studi strutturali e ultrastrutturali quasi nativi di oggetti grandi ed eterologhi come batteri, virus pleomorfi e cellule eucariotiche3. In crio-ET, le informazioni tridimensionali (3D) si ottengono inclinando fisicamente il campione sullo stadio del microscopio e acquisendo una serie di immagini attraverso il campione a diverse angolazioni. Queste immagini, o serie di inclinazioni, spesso coprono un intervallo di +60/-60 gradi con incrementi da uno a tre gradi. La serie di inclinazioni può quindi essere ricostruita computazionalmente in un volume 3D, noto anche come tomogramma4.
Tutte le tecniche crio-EM richiedono che il campione sia incorporato in un sottile strato di ghiaccio vitreo amorfo, non cristallino. Una delle tecniche di crio-fissazione più comunemente utilizzate è il congelamento a tuffo, in cui il campione viene applicato alla griglia EM, cancellato e rapidamente immerso in etano liquido o in una miscela di etano liquido e propano. Questa tecnica è sufficiente per la vetrificazione di campioni da <100 nm a ~10 μm di spessore, comprese le cellule umane in coltura, come le cellule HeLa5,6. Campioni più spessi, come mini-organoidi o biopsie tissutali, fino a 200 μm di spessore, possono essere vetrificati mediante congelamento ad alta pressione7. Tuttavia, a causa dell’aumento della diffusione elettronica di campioni più spessi, lo spessore del campione e del ghiaccio per il crio-ET è limitato a ~ 0,5 – 1 μm nei microscopi elettronici a trasmissione da 300 kV. Pertanto, la crio-ET a cellule intere di molte cellule eucariotiche è limitata alla periferia cellulare o alle estensioni delle cellule a meno che non vengano utilizzate ulteriori fasi di preparazione del campione, come la criosezione8 o la fresatura a fascio di ioni focalizzati9,10,11.
Una limitazione di molti esperimenti di imaging crio-ET a cellula intera è il throughput di raccolta dei dati12. A differenza della crio-EM a singola particella, in cui migliaia di particelle isolate possono spesso essere riprese da un singolo quadrato della griglia TEM, le cellule sono grandi, diffuse e devono essere coltivate a densità abbastanza bassa da consentire alle cellule di essere conservate in un sottile strato di ghiaccio vitreo. Spesso la regione di interesse è limitata a una particolare caratteristica o sotto-area della cellula. Un’ulteriore limitazione della produttività è la propensione delle cellule a crescere su aree che non sono suscettibili di imaging TEM, ad esempio su o vicino a barre della griglia TEM. A causa di fattori imprevedibili associati alla coltura cellulare sulle griglie TEM, sono necessari sviluppi tecnologici per migliorare l’accessibilità dei campioni e la produttività per l’acquisizione dei dati.
La micropatterning del substrato con proteine aderenti della matrice extracellulare (ECM) è una tecnica consolidata per la microscopia ottica a cellule vive per dirigere la crescita delle cellule su superfici rigide, durevoli e otticamente trasparenti come il vetro e altri substrati di coltura tissutale13,14. Il micropatterning è stato eseguito anche su superfici morbide e/o tridimensionali (3D). Tali tecniche non solo hanno permesso il posizionamento preciso delle cellule; hanno anche supportato la creazione di reti multicellulari, come i circuiti cellulari neurali modellati15. Portare il micropatterning a cryo-ET non solo aumenterà la produttività, ma può anche aprire nuovi studi per esplorare microambienti cellulari complessi e dinamici.
Recentemente, diversi gruppi hanno iniziato a utilizzare tecniche di micropatterning su griglie TEM attraverso approcci multipli16,17. Qui, l’uso di una tecnica di fotopatterning senza maschera per le griglie TEM è descritto utilizzando il sistema di micropatterning Alvéole PRIMO, che presenta pattern ad alta risoluzione e senza contatto. Con questo sistema di micropatterning, uno strato antivegetativo viene applicato sulla parte superiore del substrato, seguito dall’applicazione di un fotocatalizzatore e dall’ablazione dello strato antivegetativo in modelli definiti dall’utente con un laser UV. Le proteine ECM possono quindi essere aggiunte ai modelli per la coltura cellulare appropriata. Questo metodo è stato utilizzato da diversi gruppi per studi crio-ET su epiteliale-1 pigmento retinico (RPE1), rene canino Madin-Darby II (MDCKII), fibroblasti del prepuzio umano (HFF) e linee cellulari endoteliali16,17,18. Questo sistema di micropatterning è compatibile con più substrati di strati antivegetativi e con un reagente fotocatalizzatore liquido o gel. Una varietà di proteine ECM può essere selezionata e adattata per la specificità della linea cellulare, conferendo versatilità all’utente.
Il micropatterning è stato applicato con successo a una serie di progetti all’interno del laboratorio19. Qui viene presentato un protocollo di micropatterning, che include adattamenti specifici per studiare cellule HeLa in coltura, cellule BEAS-2B infette da virus respiratorio sinciziale (RSV) e neuroni primari della Drosophila melanogaster larvale20.
Microscopi elettronici moderni e avanzati e pacchetti software ora supportano la raccolta automatizzata di dati crio-EM e crio-ET in cui centinaia o migliaia di posizioni possono essere prese di mira e visualizzate in pochi giorni32,33,34,35. Un fattore limitante significativo per i flussi di lavoro crio-ET a cellula intera è stato l’ottenimento di un numero sufficiente di bersagli collezionabili per griglia. Recentemente, un certo numero di gruppi ha sviluppato protocolli per griglie di micropatterning per crio-EM, con un vantaggio di migliorare l’efficienza di raccolta dei dati16,17,18. Qui viene presentato un protocollo per l’utilizzo di un sistema di micropatterning disponibile in commercio per micropattern TEM griglie per studi crio-ET di neuroni Drosophila primari e linee cellulari umane in coltura (non infette o infettate da RSV). Questo sistema di micropatterning è versatile e molti passaggi possono essere ottimizzati e adattati per adattarsi a specifici obiettivi sperimentali. Un utente con esperienza teM e microscopia a fluorescenza può diventare rapidamente esperto nella preparazione della griglia e nella micropatterning. Con un’attenta pratica, buoni risultati dovrebbero essere raggiungibili dopo alcune iterazioni. Di seguito, vengono discusse alcune delle opzioni disponibili, le considerazioni per gli utenti, i potenziali benefici e le future applicazioni del micropatterning per la crio-EM.
Una delle considerazioni importanti per la crio-ET a cellula intera è la selezione della griglia EM. Le griglie EM sono composte da due parti: un telaio a rete (o supporto strutturale) e la lamina (o film), che è la superficie continua o bucata su cui cresceranno le cellule. Le griglie a rete di rame sono comunemente usate per la crio-EM di proteine e complessi isolati. Tuttavia, non sono adatti per la crio-ET a cellule intere a causa della citotossicità del rame. Invece, una rete d’oro è comunemente usata per la tomografia cellulare. Altre opzioni includono nichel o titanio, che possono fornire vantaggi rispetto all’oro come una maggiore rigidità16. Le griglie EM sono disponibili con diverse dimensioni di mesh per supportare una vasta gamma di applicazioni. Le dimensioni delle maglie più grandi offrono più spazio per le celle per crescere tra le barre della griglia e più aree che sono suscettibili di raccolta di serie tilt, anche se al costo di una maggiore fragilità complessiva del campione. La lamina più comunemente usata è il carbonio amorfo perforato o bucato, come i Quantifoils o le griglie C-flat. I bersagli biologici possono essere ripresi attraverso i fori nel carbonio o attraverso il carbonio elettrone-traslucido. Griglie come R 2/1 o R 2/2, dove i fori sono larghi 2 μm che sono distanziati rispettivamente di 1 e 2 μm, forniscono un gran numero di fori e quindi un gran numero di aree potenziali per la raccolta dei dati. Tuttavia, alcune cellule possono crescere ed espandersi meglio su superfici più uniformi come griglie R 1.2/20 o carbonio continuo. Per l’elaborazione dei campioni a valle mediante fresatura a fascio di ioni focalizzati (cryo-FIB), la lamina viene rimossa attraverso la fresatura, riducendo le preoccupazioni sulla presenza continua del film sottostante. Come per la rete, sono disponibili anche pellicole di altri materiali, con il protocollo di pattern qui presentato ugualmente adatto per le griglie SiO2 . Le griglie comunemente usate includono griglie a 200 maglie a 200 squadre in carbonio continuo o film siO2 (spaziatura di ~ 90 μm tra le barre delle griglie) per crio-ET a cellule intere.
Ci sono una serie di considerazioni quando si progetta un modello. La maggior parte di queste decisioni sono guidate dal tipo di cellula e dallo scopo dell’esperimento. Un buon punto di partenza è scegliere un modello che approssima la forma e le dimensioni delle cellule in coltura. Molti studi hanno dimostrato effetti significativi della forma del modello sulla crescita cellulare e sulla disposizione citoscheletrica13,36,37. Prestare particolare attenzione durante la progettazione del modello se ciò potrebbe alterare il target di interesse. Diversi modelli per ogni tipo di cellula sono stati testati per determinare quali modelli hanno promosso l’adesione e la crescita cellulare. La flessibilità del sistema di micropatterning consente di testare più modelli su una singola griglia e di cambiare modelli per diverse griglie all’interno di un singolo esperimento. Modelli più grandi (~ 50-90 μm), come quelli usati qui, aumentano la probabilità che più cellule aderiscano a una singola regione del modello e consentono alle cellule di espandersi ed estendersi dopo l’adesione. Modelli più vincolati (20-30 μm) possono essere appropriati in esperimenti in cui l’isolamento cellulare è più critico dell’espansione cellulare, come per esperimenti di fresatura a fascio di ioni focalizzati (crio-FIB). Per le applicazioni di tomografia, potrebbe essere necessario considerare l’impatto dell’asse di inclinazione. Se un modello è posizionato in modo tale che tutte le cellule crescano parallele l’una all’altra in un’unica direzione, è possibile che tutte le cellule siano perpendicolari all’asse di inclinazione quando caricate sullo stadio del microscopio, con conseguente minore qualità dei dati.
Sulle griglie non formattate, le celle spesso aderiscono preferenzialmente alle barre della griglia, dove non possono essere visualizzate da TEM. Anche su griglie modellate, le celle sono spesso osservate per essere posizionate negli angoli dei quadrati della griglia parzialmente sia sulla lamina di carbonio modellata che sulla barra della griglia. Recentemente, il micropatterning è stato utilizzato per posizionare intenzionalmente parte della cella sulla barra della griglia18. Questo potrebbe essere preso in considerazione per esperimenti in cui non è fondamentale avere l’intera periferia cellulare sulla lamina. Questo può essere particolarmente importante per le cellule che possono crescere più grandi di un singolo quadrato a griglia, come i neuroni primari che crescono in più giorni.
Esistono molti strumenti che possono essere utilizzati per progettare un modello. Qui, il modello era limitato a meno di 800 pixel in qualsiasi dimensione in modo tale che il modello potesse essere ruotato a qualsiasi angolo e comunque adattarsi all’area massima che può essere modellata in una singola proiezione da questo sistema di micropatterning. Ciò consente all’utente di ruotare il modello per essere correttamente orientato con la griglia indipendentemente dall’orientamento della griglia sul microscopio. Qui, la griglia è stata divisa in sei aree di pattern. In primo luogo, ciò consente la regolazione della messa a fuoco tra le diverse regioni della griglia. Le griglie dorate, in particolare, sono molto malleabili e potrebbero non essere completamente piatte sul vetro. Una corretta messa a fuoco è essenziale per risultati di pattern puliti e raffinati. Utilizzando modelli segmentati, è necessario apportare solo piccole modifiche alla posizione del modello se la griglia si sposta leggermente durante il processo di creazione della creazione di modelli, anche se questo di solito non è un problema quando si utilizza il gel PLPP con gli stencil PDMS. Infine, i quattro quadrati centrali della griglia sono rimasti invariati. Ciò supporta un utente in grado di identificare chiaramente il centro della griglia, il che è molto utile per gli esperimenti di imaging correlativo.
Il software di patterning per questo sistema di micropatterning, Leonardo, ha anche caratteristiche più avanzate come la cucitura e la possibilità di importare modelli come PDF, che esulano dallo scopo di questo protocollo. Questo software include anche il rilevamento di microstrutture e il posizionamento automatizzato del modello che può essere utilizzato sulle griglie TEM. Questa funzione è particolarmente utile quando la griglia è molto piatta e può essere modellata senza la necessità di regolare la messa a fuoco tra diverse aree.
La selezione di una proteina ECM può avere un impatto significativo sull’adesione e l’espansione cellulare. È noto che alcune cellule subiscono cambiamenti fisiologici se coltivate su substrati specifici38. Più proteine e concentrazioni di ECM sono state testate per qualsiasi nuovo tipo di cellula sulla base di precedenti lavori riportati in letteratura. Laminina, il fibrinogeno, la fibronectina e il collagene sono ampiamente utilizzati per le cellule coltivate e possono essere utilizzati come punto di partenza se non sono disponibili altri dati. Tuttavia, anche altre proteine ECM devono essere considerate se le proteine ECM comunemente usate non riescono a conferire proprietà di aderenza adeguate per le cellule. Ciò era particolarmente vero per i neuroni primari della Drosophila , poiché un’alta concentrazione della pianta lectina concanavalina A era necessaria per una corretta aderenza cellulare. La compatibilità dell’adesione e della crescita cellulare con l’ECM può essere testata modellando su piatti o vetrini prima di passare alle griglie TEM. Questo approccio di pre-screening è efficace in termini di tempo e di costi se è necessario esaminare un gran numero di combinazioni. L’inclusione di una proteina ECM coniugata fluorescentemente è preziosa per valutare il successo e la qualità del patterning.
La semina cellulare è uno dei passaggi più importanti per la crio-ET a cellule intere, con o senza micropatterning6,16,39. Per la Drosophila primaria o altri neuroni, che sono fragili, instabili in sospensione e possono essere limitati in quantità, gli approcci di semina singola sono preferiti rispetto alla semina cellulare sequenziale monitorata. Una singola fase di semina a una densità cellulare ottimizzata, come descritto nel protocollo per i neuroni Drosophila, è un’opzione praticabile per la maggior parte dei tipi di cellule. Tuttavia, è anche possibile seminare cellule sul substrato a una concentrazione iniziale inferiore e aggiungere più cellule in modo monitorato, come descritto qui e in altra letteratura18. Questa semina sequenziale può fornire risultati più coerenti in alcuni casi. Simile alla coltura cellulare standard, si dovrebbe sempre prestare attenzione a mantenere la vitalità cellulare e ridurre al minimo l’aggregazione cellulare durante l’isolamento.
Quando si inizia con il micropatterning, ci sono alcune potenziali insidie che sono dannose per il risultato finale. Un’attenta gestione della griglia e una tecnica sterile, una distribuzione uniforme del gel PLPP, una dose e una messa a fuoco adeguate durante il pattern e il mantenimento della vitalità cellulare prima della semina sono tra le considerazioni più importanti per il successo. Un elenco di alcuni dei potenziali problemi e delle soluzioni è stato raccolto nella Tabella 1.
Le griglie micropatternate possono essere utilizzate per aiutare a posizionare le celle per stabilire una densità di cella coerente attraverso la griglia e per posizionare le regioni di interesse in aree adatte alla raccolta di serie di inclinazioni16,18. Il posizionamento e il posizionamento delle cellule possono essere utilizzati come marcatori fiduciali per la correlazione negli esperimenti crio-CLEM, riducendo la necessità di fragili griglie di ricerca e marcatori fiduciali fluorescenti. Tuttavia, va notato che tali marcatori fiduciali possono ancora essere utili per la correlazione dell’accuratezza sub-micrometrica29,40. Inoltre, una distribuzione uniforme delle cellule isolate è anche molto vantaggiosa per gli esperimenti di fresatura a fascio di ioni focalizzati (crio-FIB) per massimizzare il numero di cellule da cui è possibile tagliare la lamella16.
L’aggiunta del micropatterning ai flussi di lavoro crio-EM comporterà miglioramenti misurabili nel throughput dei dati e potenzialmente consentirà nuovi esperimenti. Man mano che la tecnica viene ulteriormente adottata e sviluppata, applicazioni più avanzate di micropatterning, tra cui gradienti ECM, deposizioni ECM multiple e assemblaggio di microstrutture, espanderanno ulteriormente le capacità di crio-ET per studiare bersagli e processi biologici in pieno contesto cellulare.
The authors have nothing to disclose.
Ringraziamo la dott.ssa Jill Wildonger, la dott.ssa Sihui Z. Yang e la signora Josephine W. Mitchell del Dipartimento di Biochimica dell’Università del Wisconsin, Madison per aver generosamente condiviso il ceppo di mosca elav-Gal4, UAS-CD8::GFP (Bloomington stock center, #5146). Vorremmo anche ringraziare il Dr. Aurélien Duboin, il Signor Laurent Siquier e la Signora Marie-Charlotte Manus di Alvéole e il Signor Serge Kaddoura di Nanoscale Labs per il loro generoso supporto durante questo progetto. Questo lavoro è stato supportato in parte dall’Università del Wisconsin, Madison, dal Dipartimento di Biochimica dell’Università del Wisconsin, Madison, e il servizio sanitario pubblico concede R01 GM114561, R01 GM104540, R01 GM104540-03W1 e U24 GM139168 a E.R.W. e R01 AI150475 a P.W.S. dal NIH. Una parte di questa ricerca è stata supportata dalla sovvenzione NIH U24 GM129547 ed eseguita presso il PNCC dell’OHSU e accessibile tramite EMSL (grid.436923.9), un DOE Office of Science User Facility sponsorizzato dall’Office of Biological and Environmental Research. Siamo anche grati per l’uso di strutture e strumentazione presso il Cryo-EM Research Center nel Dipartimento di Biochimica dell’Università del Wisconsin, Madison.
0.1% (w/v) Poly-L-Lysine | Sigma | P8920-100ML | |
0.22 µm syringe filters PVDF membrane | Genesee | 25-240 | |
22×60-1 Glass cover slip | Fisher | 12545F | |
5/15 Tweezers | EMS (Dumont) | 0203-5/15-PO | |
Antibiotic-Antimycotic (100X) | ThermoFisher (Gibco) | 15240096 | |
BEAS-2B cells | ATCC | CRL-9609 | |
Collagen I, bovine | ThermoFisher (Gibco) | A1064401 | |
Concanavalin A, Alexa Fluor 350 Conjugate | ThermoFisher (Invitrogen) | C11254 | |
DMEM | Fisher (Lonza) | BW12-604F | |
EtOH | Fisher (Decon Labs) | 22-032-600 | |
Fetal Bovine Serum | ATCC | 30-2020 | |
Fibrinogen From Human Plasma, Alexa Fluor 647 Conjugate | ThermoFisher (Invitrogen) | F35200 | |
Fibronectin Bovine Protein, Plasma | ThermoFisher (Gibco) | 33010018 | |
Glass bottom dish | MatTek | P35G-1.5-20-C | |
Glucose | VWR | 0643-1KG | |
Grid prep holder | EMS | 71175-01 | |
HeLa cells | ATCC | CCL-2 | |
Hemacytometer | Fisher (SKC, Inc.) | 22600100 | |
HEPES | Fisher (ACROS Organics) | AC172572500 | |
Hoechst 33342 | ThermoFisher (Invitrogen) | H3570 | |
Insulin | Fisher (Sigma Aldrich) | NC0520015 | |
KCl | MP Bio | 194844 | |
KH2PO4 | Fisher (ACROS Organics) | AC212595000 | |
Leica-DMi8 | Leica Microsystems | Can be customized with camera, stage, and objective attachments | |
Leonardo | Alvéole | https://www.alveolelab.com/our-products/leonardo-photopatterning-software/ | |
Liberase Research Grade | Fisher (Supply Solutions) | 50-100-3280 | |
LIVE/DEAD Viability/Cytotoxicity Kit | ThermoFisher (Invitrogen) | L3224 | |
Microscope camera | Hammamatsu | C13440-20CU | |
Motorized stage | Märzhäuser Wetzlar | 00-24-599-0000 | |
NaCl | Fisher (Fisher BioReagents) | BP358-1 | |
NaH2PO4 | Fisher (ACROS Organics) | AC207802500 | |
NaOH | Fisher (Alfa Aesar) | AAA1603736 | |
PBS | Corning | 21-040-CV | |
PDMS stencils | nanoscaleLABS | PDMS_STENCILS_EM | https://www.alveolelab.com/our-products/pdms-stencil-multiwell-plate/ |
PEG-SVA | nanoscaleLABS | PEG-SVA-1GR | mPEG-Succinimidyl Valerate, MW 5,000 |
Penicillin | Fisher (Research Products International Corp) | 50-213-641 | |
pH strips | Fisher (Millipore Sigma) | M1095350001 | pH probe can also be used |
PLPP gel | nanoscaleLABS | PLPP-GEL-300UL | https://www.alveolelab.com/our-products/plpp-photoactivatable-reagent/ |
PRIMO | Alvéole | https://www.alveolelab.com/our-products/primo-micropatterning/ | |
pSynkRSV-I19F (BAC containing RSV A2-mK+ antigenomic cDNA ) | BEI Resources | NR-36460 | https://www.beiresources.org/Catalog/BEIPlasmidVectors/NR-36460.aspx |
Quantifoil grids | EMS (Quantifoil) | Q2100AR1 | 2 µm holes spaced 1 µm apart, other dimensions are available |
RPMI | Fisher (Lonza) | BW12-702F | |
RSV A2-mK+ | see entry for pSynkRSV-19F | – | Described in Hotard et al. [22]. Can be generated from pSynkRSV-ll9F |
Schneider's Media | ThermoFisher (Gibco) | 21720-024 | |
SerialEM | SerialEM (https://bio3d.colorado.edu/SerialEM/ ) | https://bio3d.colorado.edu/SerialEM/ | |
Straight tweezers | EMS (Dumont) | 72812-D | |
Streptomycin | Fisher (Fisher BioReagents) | BP910-50 | |
Sucrose | Avantor | 4097-04 | |
Tetracycline | Sigma | T8032-10MG | |
Titan Krios electron microscope | ThermoFisher | 300kV, with direct electron detector camera and energy filter | |
Trypsin | ThermoFisher (Gibco) | 15090046 | |
Tube Revolver/Rotator | Fisher (Thermo Scientific) | 11676341 | |
UAS:mcD8:GFP Drosophila fly strain | Bloomington Drosophila Stock Center | 5146 | http://flybase.org/reports/FBtp0002652.html |