Summary

Генерация органоидов мозга из индуцированных плюрипотентных стволовых клеток в самодельных мини-биореакторах

Published: December 11, 2021
doi:

Summary

Здесь мы описываем протокол генерации органоидов мозга из индуцированных человеком плюрипотентных стволовых клеток (IPSCs). Для получения органоидов головного мозга в больших количествах и высокого качества мы используем самодельные мини-биореакторы.

Abstract

Органоид мозга, полученный из iPSC, является перспективной технологией для моделирования in vitro патологий нервной системы и скрининга лекарств. Эта технология появилась недавно. Он все еще находится в зачаточном зачаточном начале и имеет некоторые ограничения, которые еще не решены. Существующие протоколы не позволяют получить органоиды, чтобы быть достаточно последовательными для открытия лекарств и доклинических исследований. Созревание органоидов может занять до года, подталкивая исследователей к запуску нескольких процессов дифференцировки одновременно. Это налагает дополнительные расходы на лабораторию с точки зрения площади и оборудования. Кроме того, органоиды головного мозга часто имеют некротическую зону в центре, которая страдает от дефицита питательных веществ и кислорода. Следовательно, большинство современных протоколов используют циркулирующую систему для культивирования среды для улучшения питания.

Между тем, не существует недорогих динамических систем или биореакторов для культивирования органоидов. В этой статье описывается протокол производства органоидов головного мозга в компактных и недорогих самодельных мини-биореакторах. Этот протокол позволяет получать высококачественные органоиды в больших количествах.

Introduction

Модели, полученные из iPSC человека, широко используются в исследованиях нейроразвития и нейродегенеративных расстройств1. За последнее десятилетие 3D-модели мозговой ткани, так называемые органоиды мозга, существенно дополнили традиционные 2D-нейронные культуры2. Органоиды в некоторой степени повторяют 3D-архитектуру эмбрионального мозга и позволяют более точно моделировать. Опубликовано много протоколов для генерации органоидов, представляющих различные области мозга: кора головного мозга3,4,5,мозжечок6,средний мозг, передний мозг, гипоталамус7,8,9и гиппокамп10. Было несколько примеров использования органоидов для изучения заболеваний нервной системы человека11. Также органоиды были внедрены в лекарственные открытия12 и использованы в исследованиях инфекционных заболеваний, в том числе SARS-Cov-213,14.

Органоиды головного мозга могут достигать до нескольких миллиметров в диаметре. Так, внутренняя зона органоида может страдать от гипоксии или неправильного питания и со временем становиться некротической. Поэтому многие протоколы включают специальные биореакторы8,шейкеры или микрофлюидные системы15. Эти устройства могут потребовать больших объемов дорогостоящих клеточных культур. Также стоимость такого оборудования обычно высока. Некоторые биореакторы состоят из множества механических частей, которые затрудняют их стерилизацию для повторного использования.

Большинство протоколов страдают от «пакетного эффекта»16,который порождает значительную вариабельность среди органоидов, полученных из идентичных ИПСК. Эта изменчивость препятствует тестированию лекарств или доклиническим исследованиям, требующим единообразия. Высокий выход органоидов, достаточный для выбора органоидов однородного размера, может частично решить эту проблему.

Фактор времени также является существенной проблемой. Matsui et al. (2018) показали, что органоидам мозга требуется не менее шести месяцев, чтобы достичь зрелости17. Trujillo et al. (2019) также продемонстрировали, что электрофизиологическая активность возникала у органоидов только после шести месяцев культивирования18. Из-за длительного времени созревания органоидов исследователи часто запускают новую дифференциацию до завершения предыдущей. Множественные параллельные процессы дифференциации требуют дополнительных затрат, оборудования и лабораторного пространства.

Недавно мы разработали мини-биореактор, который в основном решает проблемы, упомянутые выше19. Этот самодельный биореактор состоит из сверхнизкой адгезии или необработанная чашка Петри с пластиковой ручкой в центре. Эта пластиковая ручка предотвращает скопление органоидов и их смешение в центре чашки Петри, что вызвано вращением шейкер. В данной работе описано, как этот недорогой и простой самодельный мини-биореактор позволяет генерировать высококачественные органоиды мозга в больших количествах.

Protocol

ПРИМЕЧАНИЕ: Используйте стерильный метод во всем протоколе, исключая этапы 1.2 и 1.3. Прогрейте все культуральные среды и растворы до 37 °C перед нанесением на клетки или органоиды. Культивируйте клетки в инкубатореCO2 при 37 °C при 5% CO2 при влажности 80%. Схема протокола показана <strong…

Representative Results

Схема протокола показана на рисунке 1. Протокол включал пять сред, в которых IPSCs дифференцировались на органоиды мозга в течение как минимум одного месяца. Дифференциация была начата, после чего ИПСК достигли 75-90% слияния(Рисунок 2А,В). Первые приз…

Discussion

Описанный протокол имеет два важных этапа, позволяющих генерацию высококачественных органоидов одинакового размера. Во-первых, органоиды растут из сфероидов, которые почти идентичны по количеству клеток и зрелости клеток. Во-вторых, самодельные биореакторы обеспечивают каждому орга?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Данная работа была поддержана грантом 075-15-2019-1669 Министерства науки и высшего образования Российской Федерации (анализ ОТ-ПЦР) и грантом No 19-15-00425 Российского научного фонда (на все остальные работы). Авторы также благодарят Павла Беликова за помощь в монтаже видео. Рисунки в рукописи были созданы с BioRender.com.

Materials

Advanced DMEM/F-12 Gibco 12634010 DMEM/F-12
AggreWell400 STEMCELL Technologies Inc 34425 24-well culture plate with microwells
B-27 Supplement Gibco 17504044 Neuronal supplement B
GlutaMAX Supplement Gibco 35050061 200 mM L-alanyl-L-glutamine
Human BDNF Miltenyi Biotec 130-096-285
Human FGF-2 Miltenyi Biotec 130-093-839
Human GDNF Miltenyi Biotec 130-096-290
KnockOut Serum Replacement Gibco 10828028 Serum replacement
mTESR1 STEMCELL Technologies Inc 85850 Pliripotent stem cell medium
N2 Supplement Gibco 17502001
Neurobasal Medium Gibco 21103049 Basal medium for neuronal cell maintenance
Penicillin-Streptomycin Solution Gibco 15140130
Plasmocin InvivoGen ant-mpt-1 Antimicrobials
Purmorphamine EMD Millipore 540220
StemMACS Y27632 Miltenyi Biotec 130-106-538 Y27632
StemMACS Dorsomorphin Miltenyi Biotec 130-104-466 Dorsomorphin
StemMACS LDN-193189 Miltenyi Biotec 130-106-540 LDN-193189
StemMACS SB431542 Miltenyi Biotec 130-106-543 SB431542
Trypan Blue Solution Gibco 15250061
Versen solution Gibco 15040066 0.48 mM EDTA in PBS
β-mercaptoethanol Gibco 31350010

Referenzen

  1. Marchetto, M. C., Winner, B., Gage, F. H. Pluripotent stem cells in neurodegenerative and neurodevelopmental diseases. Human Molecular Genetics. 19, 71-76 (2010).
  2. Lee, C. T., Bendriem, R. M., Wu, W. W., Shen, R. F. 3D brain Organoids derived from pluripotent stem cells: promising experimental models for brain development and neurodegenerative disorders. Journal of Biomedical Science. 24 (1), 1-12 (2017).
  3. Kadoshima, T., et al. Self-organization of axial polarity, inside out layer pattern, and species-specific progenitor dynamics in human ES cell-derived neocortex. Proceedings of the National Academy of Sciences U.S.A. 110 (50), 20284 (2013).
  4. Lancaster, M. A., et al. Cerebral organoids model human brain development and microcephaly. Nature. 501 (7467), 373-379 (2013).
  5. Xiang, Y., et al. Fusion of regionally specified hPSC derived organoids models human brain development and interneuron migration. Cell Stem Cell. 21, 383-398 (2017).
  6. Muguruma, K., Nishiyama, A., Kawakami, H., Hashimoto, K., Sasai, Y. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Reports. 10 (4), 537-550 (2015).
  7. Qian, X., et al. Brain region specific organoids using mini bioreactors for modeling ZIKV exposure. Cell. 165 (5), 1238-1254 (2016).
  8. Qian, X., et al. Generation of human brain region specific organoids using a miniaturized spinning bioreactor. Nature Protocols. 13 (3), 565-580 (2018).
  9. Jo, J., et al. Midbrain like organoids from human pluripotent stem cells contain functional dopaminergic and neuro melanin producing neurons. Cell Stem Cell. 19 (2), 248-257 (2016).
  10. Sakaguchi, H., et al. Generation of functional hippocampal neurons from self-organizing human embryonic stem cell derived dorsomedial telencephalic tissue. Nature Communication. 6 (1), 8896 (2015).
  11. Di Lullo, E., Kriegstein, A. R. The use of brain organoids to investigate neural development and disease. Nature Reviews Neuroscience. 18 (10), 573-584 (2017).
  12. Chen, K. G., et al. Pluripotent stem cell platforms for drug discovery. Trends in Molecular Medicine. 24 (9), 805-820 (2018).
  13. Dang, J., et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell. 19 (2), 258-265 (2016).
  14. Tiwari, S. K., Wang, S., Smith, D., Carlin, A. F., Rana, T. M. Revealing tissue-specific SARS-CoV-2 infection and host responses using human stem cell-derived lung and cerebral organoids. Stem Cell Reports. 16 (3), 437-445 (2021).
  15. Ao, Z., et al. One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure. Analytical Chemistry. 92 (6), 4630-4638 (2020).
  16. Di Nardo, P., Parker, G. C. Stem cell standardization. Stem Cells Development. 20 (3), 375-377 (2011).
  17. Jo, J., Xiao, Y., et al. Midbrain like organoids from human pluripotent stem cells contain functional dopaminergic and neuro melanin producing neurons. Cell Stem Cell. 19 (2), 248-257 (2016).
  18. Matsui, T. K., et al. Six-month cultured cerebral organoids from human ES cells contain matured neural cells. Neuroscience Letters. 670, 75-82 (2018).
  19. Trujillo, C. A., et al. Complex oscillatory waves emerging from cortical organoids model early human brain network development. Cell Stem Cell. 25 (4), 558-569 (2019).
  20. Eremeev, A. V., et al. Necessity Is the mother of invention” or inexpensive, reliable, and reproducible protocol for generating organoids. Biochemistry (Moscow). 84 (3), 321-328 (2019).
  21. Qian, X., et al. Generation of human brain region–specific organoids using a miniaturized spinning bioreactor. Nature Protocols. 13, 565-580 (2018).
  22. Matsui, T. K., Tsuru, Y., Hasegawa, K., Kuwako, K. I. Vascularization of human brain organoids. Stem Cells. 39 (8), 1017-1024 (2021).
  23. Hall, G. N., et al. Patterned, organoid-based cartilaginous implants exhibit zone specific functionality forming osteochondral-like tissues in vivo. Biomaterials. 273, 120820 (2021).
  24. Zachos, N. C., et al. Human enteroids/colonoids and intestinal organoids functionally recapitulate normal intestinal physiology and pathophysiology. Journal of Biological Chemistry. 291, 3759-3766 (2016).
  25. Eremeev, A., et al. Cerebral organoids—challenges to establish a brain prototype. Cells. 10 (7), 1790 (2021).
  26. Kadoshima, T., et al. Self-organization of axial polarity, inside-out layer pattern, and species-specific progenitor dynamics in human ES Cell-derived neocortex. Proceedings of the National Academy of Sciences U. S. A. 110, 20284-20289 (2013).

Play Video

Diesen Artikel zitieren
Eremeev, A., Belikova, L., Ruchko, E., Volovikov, E., Zubkova, O., Emelin, A., Deev, R., Lebedeva, O., Bogomazova, A., Lagarkova, M. Brain Organoid Generation from Induced Pluripotent Stem Cells in Home-Made Mini Bioreactors. J. Vis. Exp. (178), e62987, doi:10.3791/62987 (2021).

View Video