التكيف الأيضي أمر أساسي للخلايا التائية لأنه يملي التمايز والثبات والسمية الخلوية. هنا ، يتم تقديم بروتوكول محسن لمراقبة التنفس الميتوكوندريا في الخلايا التائية الأولية البشرية المتمايزة خارج الجسم الحي السيتوكين .
أثناء التنشيط ، يتكيف التمثيل الغذائي للخلايا التائية مع التغييرات التي تؤثر على مصيرها. لا غنى عن زيادة الفسفرة التأكسدية للميتوكوندريا لتنشيط الخلايا التائية ، ويعتمد بقاء الخلايا التائية للذاكرة على إعادة تشكيل الميتوكوندريا. وبالتالي ، يؤثر هذا على النتائج السريرية طويلة الأجل للعلاجات المناعية للسرطان. غالبا ما تتم دراسة التغيرات في جودة الخلايا التائية عن طريق قياس التدفق الخلوي باستخدام علامات سطحية معروفة وليس مباشرة من خلال حالتها الأيضية. هذا بروتوكول محسن لقياس التنفس الميتوكوندريا في الوقت الحقيقي للخلايا التائية البشرية الأولية باستخدام محلل التدفق خارج الخلية والسيتوكينات IL-2 و IL-15 ، والتي تؤثر بشكل مختلف على استقلاب الخلايا التائية. يظهر أن الحالة الأيضية للخلايا التائية يمكن تمييزها بوضوح عن طريق قياس استهلاك الأكسجين عند تثبيط المجمعات الرئيسية في المسار الأيضي وأن دقة هذه القياسات تعتمد بشكل كبير على التركيز الأمثل للمثبط واستراتيجية حقن المثبطات. سيساعد هذا البروتوكول الموحد على تنفيذ التنفس الميتوكوندريا كمعيار للياقة البدنية للخلايا التائية في مراقبة ودراسة العلاجات المناعية للسرطان.
يعد تطور الخلايا التائية الصحيحة ووظيفتها ضروريين لقدرة الجهاز المناعي على التعرف على المستضدات والاستجابة لها. تتغير الفسفرة التأكسدية للميتوكوندريا (OxPhos) وفقا لحالة الخلية التائية. تستخدم الخلايا التائية الساذجة في الغالب OxPhos لإنتاج ATP ، في حين تخضع الخلايا التائية المنشطة لانتقال استقلابي حيث يصبح تحلل السكر هو المهيمن1. بعد مرحلة المستجيب ، تعود المجموعة الفرعية الصغيرة المتبقية من خلايا الذاكرة T إلى حالة التمثيل الغذائي التي تهيمن عليها OxPhos2,3. تتبع تغيرات OxPhos تمايز الخلايا التائية لدرجة أنه حتى المجموعات الفرعية من الخلايا التائية يمكن تمييزها من خلال خصائصها المحددة في OxPhos 1. وعلى العكس من ذلك، فإن OxPhos مهم لوظيفة الخلايا التائية، وقد ثبت أن تثبيط OxPhos يمنع انتشار الخلايا التائية وإنتاج السيتوكين4. لذلك ، فإن القدرة على تحديد خصائص الخلايا التائية OxPhos بطريقة دقيقة وقابلة للتكرار هي أداة قوية لأي شخص يعمل مع الخلايا التائية.
في هذا البروتوكول ، يتم قياس خصائص OxPhos للخلايا التائية باستخدام محلل التدفق خارج الخلية. تتمثل الوظيفة الأساسية لهذا المحلل في قياس محتوى الأكسجين في وسائط نمو الخلايا المراد تحليلها باستمرار. يفترض أن الأكسجين الذي تتم إزالته من وسائط النمو يتم تناوله بواسطة الخلايا. من خلال علاج الخلايا بمجموعة متنوعة من مثبطات أو معدلات OxPhos ، يرتبط انخفاض امتصاص الأكسجين بالوظيفة المثبطة أو المعدلة. على سبيل المثال ، سيؤدي تثبيط سينثاز ATP إلى انخفاض امتصاص الخلايا للأكسجين الذي كان يمكن استخدامه لإنتاج ATP عن طريق الفسفرة التأكسدية. توفر المعدات الأخرى ، بما في ذلك قطب كلارك الكهربائي وأداة Oroboros ، وظائف مماثلة ، ولكل أداة مزايا وعيوب مختلفة. يمكن استخدام مجموعة واسعة من أنواع الخلايا للدراسات في هذه الأجهزة، ولكن أحد أنواع الخلايا الصعبة بشكل خاص هو الخلايا الليمفاوية التائية الأولية البشرية5. نظرا لصغر حجمها ، وضعف البقاء على قيد الحياة خارج الجسم الحي ، وخصائصها غير الملتصقة ، يمكن أن تكون الخلايا التائية الأولية البشرية صعبة الدراسة.
هذا بروتوكول لدراسة التنفس الميتوكوندريا للخلايا التائية الأولية البشرية بواسطة محلل خارج الخلية. ينقسم البروتوكول إلى تشغيل التحسين ، حيث يتم تحديد التركيزات المثلى لعدد الخلايا لكل بئر ، وكذلك التركيز الأمثل للأوليغومايسين و FCCP. علاوة على ذلك ، يتم تشغيل الفحص ، حيث يتم استخدام الظروف المحسنة.
باستخدام PBMCs البشرية المشتقة من الدم ومزارع الخلايا التائية الأولية خارج الجسم الحي ، يوضح هذا البروتوكول أهمية التركيز الأمثل للمثبطات وأهمية استخدام حقن منفصل بدلا من الحقن المتسلسل لمثبطات الميتوكوندريا عند العمل مع أنواع الخلايا الحساسة. أخيرا ، ثبت أن هذا الفحص يمكن أن يكتشف بقوة الاختلافات الدقيقة في تنفس الميتوكوندريا عند الاستقطاب مع السيتوكينات IL-2 و IL-15.
يعد التحديد الكمي المفصل والصحيح للفسفرة التأكسدية أداة لا غنى عنها عند وصف حالات الطاقة للخلايا التائية. يمكن أن ترتبط حالة لياقة الميتوكوندريا ارتباطا مباشرا بإمكانات تنشيط الخلايا التائية والبقاء على قيد الحياة والتمايز1,5. باستخدام هذا البروتوكول ، من…
The authors have nothing to disclose.
تلقى كاسبر مولغارد وآن راهبيش منحا من Tømmermester Jørgen Holm og Hustru Elisa f. Hansens Mindelegat. كما حصل كاسبر مولغارد على منحة من Børnecancerfonden.
24-well tissue culture plate | Nunc | 142485 | |
Anti-CD3xCD28 beads | Gibco | 11161D | |
Antimycin A | Merck | A8674 | |
Carbonyl cyanide 4-(trifluoromethoxy)-phenylhydrazone (FCCP) | Sigma-Aldrich | C2920 | |
Cell-Tak | Corning | 354240 | For coating |
Dimethyl sulfoxide (DMSO) | Sigma Aldrich | D9170 | |
Human Serum | Sigma Aldrich | H4522 | Heat inactivated at 56 °C for 30 min |
IL-15 | Peprotech | 200-02 | |
IL-2 | Peprotech | 200-15 | |
Lymphoprep | Stemcell Technologies | 07801 | |
Oligomycin | Merck | O4876 | |
PBS | Thermo Fisher | 10010023 | |
RPMI 1640 | Gibco-Thermo Fisher | 61870036 | |
Seahorse Calibrant | Agilent Technologies | 102416-100 | |
Seahorse XF 1.0 M glucose solution | Agilent Technologies | 103577-100 | |
Seahorse XF 100 mM pytuvate solution | Agilent Technologies | 103578-100 | |
Seahorse XF 200 mM glutamine solution | Agilent Technologies | 103579-100 | |
Seahorse XF RPMI medium, pH7.4 | Agilent Technologies | 103576-100 | XF RPMI media |
Seahorse XFe96 Analyser | Agilent Technologies | Flux analyzer | |
Seahorse XFe96 cell culture microplates | Agilent Technologies | 102416-100 | XF cell culture plate |
Seahorse XFe96 sensor cartridge | Agilent Technologies | 102416-100 | |
Sodium Bicarbonate concentrate 0.1 M (NaHCO3) | Sigma Aldrich | 36486 | |
Sodium Hydroxide solution 1 N (NaOH) | Sigma Aldrich | S2770-100ML | |
X-VIVO 15 | Lonza | BE02-060F | |
T cell beads magnet DynaMag-2 Magnet | Thermo Fisher | 12321D | |
Seahorse wave | Flux analyzer software |