マイクロプレートフィーダーアッセイは、 ショウジョウバエの液体食品消費を定量化するための経済的で高いスループットの方法を提供します。3Dプリントされたデバイスは、ハエが1536ウェルマイクロプレートに収容される96ウェルマイクロプレートを接続し、そこからハエがトレーサー染料で給餌溶液を消費します。溶液体積の減少は分光光度測定で測定される。
ショウジョウバエの食物摂取を定量化することは、消費関連の形質の遺伝的および生理学的基盤、その環境要因、および多数の物質の毒性学的および薬理学的効果を研究するために使用される。現在実装されている方法の中には、高スループットの測定に適した方法はほとんどありません。マイクロプレートフィーダアッセイ(MFA)は、吸光度を用いて個々のハエの液体食品の消費量を定量化するために開発されました。このアッセイでは、ハエは1536ウェルマイクロプレートの選択された井戸から液体食品培地を消費します。希薄トレーサー染料を液体食品媒体に組み込み、既知の体積を各ウェルにロードすることにより、消費前後で得られたよく得られた吸光度測定は、その結果として生じる体積変化(すなわち、消費される体積)を反映する。この方法で高スループット解析を可能にするために、3Dプリントされたカプラーは、ハエを96ウェルマイクロプレートに個別にソートできるように設計されました。この装置は正確に96-および1536-wellマイクロプレートを向け、各フライに消費のための最大4つの井戸へのアクセスを与え、したがって、定期的な消費に加えて食品嗜好の定量化を可能にする。さらに、このデバイスには、一度に制御された封じ込めとサンプルの列の放出を可能にするために、開いた位置と閉じた位置を切り替えるバリアストリップがあります。この方法は、同時に多くのハエによる水溶液の消費の高スループット測定を可能にする。また、他の昆虫に適応し、栄養素、毒素、または医薬品の消費をスクリーニングする可能性を秘めています。
ショウジョウバエメラノガスターは、食物摂取の生物学的基盤と消費に関連する形質を研究するための遺伝的モデル生物として広く使用されている。ヒト疾患を引き起こす遺伝子の65%がハエの機能的ホモログを有すると推定されており、ハエとヒトの間の機能的に同等な組織で発現されているもののかなりの割合を2に示している。さらに、D.メラノガスターのサイズ、短い世代間時間、簡単な維持、および遺伝的な難易度は、栄養素の消費に関する研究のための魅力的なモデルを作る3,4および様々な物質の毒性学的および薬理学的効果, 殺虫剤を含む様々な物質の, 含む, 汚染物質6, 医薬品7, 乱用薬8,9,10.
多くの場合、このような形質の研究は、消費の正確な定量化を必要とします。消費を定量化する方法は多様であり、CApillary FEeder(CAFE)アッセイ11、マヌアル・フィーディング(MAFE)アッセイ12、プロボシス拡張応答(PER)アッセイ13、トレーサー色素抽出14、15、オリゴヌクレオチドトレーサー抽出16、およびラジオアイソトープ抽出5、17を含む。最近の取り組みは、Expressoアッセイ18またはプレートベースの全動物給餌FLat(WAFFL)システム19のように、これらのアッセイのスループットを向上させることに焦点を当てている。その有用性にもかかわらず、これらのアッセイは複雑、コスト、または労働集約的であり、ハイスループット研究での使用を妨げる可能性があります。
図1:マイクロプレートフィーダアッセイの成分(A)組み立てられたマイクロプレートフィーダアッセイの3Dレンダリング。1536ウェルマイクロプレートは、下の96ウェルマイクロプレートの各ウェルが上の1536ウェルマイクロプレートの4つの井戸にアクセスできるように、3Dプリントされたカプラーによって配向されています。ウェルへのアクセスは、カプラーを通してスロットされたバリアストリップの位置を調整することによって制御することができる。(B)マイクロプレートフィーダアッセイの各ウェルをグラフィカルに表現した。消費ソリューションは、フライによるアクセスを可能にするために穿穿られたシールフィルムを使用して、各井戸に保持されます。この図の大きなバージョンを表示するには、ここをクリックしてください。
図2:マイクロプレートフィーダアッセイの手順の概要 図は、プロトコルのステップ 4.1 ~ 5.8 に対応するフロー図を示しています。 この図の大きなバージョンを表示するには、ここをクリックしてください。
これらのハードルを克服するために、マイクロプレートフィーダアッセイ(MFA; 図1)開発されました。このアッセイでは、ハエは96ウェルマイクロプレートに個別に収容されます。各マイクロプレートは、カスタムの3Dプリントデバイスを使用して1536ウェルマイクロプレートに結合されます。装置は正確に96ウェル版のそれぞれの井戸のそれぞれの井戸のフライが1536ウェルマイクロプレートの4つの井戸へのアクセスを持っていることを正確に2つの版を向ける。底なしの1536ウェルプレートとシールフィルムを使用することにより、ソリューションは選択した井戸に分配され、正確な0.25ミリメートルの直径の針で穿孔され、ハエへのアクセスを提供します。クリティカルに、マイクロプレートから直接消費を可能にするマイクロプレートリーダーを使用して即時吸光度ベースの測定を可能にする。希薄トレーサー色素を消費媒体に組み込み、露光後の吸光度の変化を使用して消費される体積を決定する(図2 および 図3)。各ウェルの液体は流体の列に近いので、体積差はカラムの高さの違いとして現れます。(図3A)ビール・ランバート法20によると:
ここでAは吸光度、εは減衰分析物のモル吸収係数、lは光路長、cは減衰分析物の濃度です。したがって、一定のモル吸収係数および濃度を有する、吸光度の変化は、光路の変化、すなわち所定のウェル内の流体レベルに起因する。露光前後の吸光度を測定することで、吸光度の比例変化は体積の比例変化を反映する(図3B)。
図3: 吸光ベースのウェルボリュームの定量化(A)既知の入力強度の入射光(I0)が各ウェルを通過する。異なる充填体積での光の減衰は、体積と吸光度の間に線形関係を示す異なる出力強度(I)をもたらす。(B)吸光度対体積の経験的測定。この図の大きなバージョンを表示するには、ここをクリックしてください。
体積の変化に基づいて、任意の摂取された化合物の量は、摂食溶液中の既知の濃度から計算することができる。アッセイに必要な部品はコストが低く、再利用性が高いため、アッセイの繰り返しコストが大幅に削減されます。したがって、この手順は、正確に消費を定量化する手頃な価格、高スループットの方法を提供します。
この研究は、ショウジョウバエの消費を定量化するための新しいプロトコルであるマイクロプレートフィーダーアッセイ(MFA)について説明しています。このアッセイでは、ハエは制御されたサイズの穿径を通して1536ウェルマイクロプレートの密閉された井戸から消費する(図1、図2;補足ビデオ S.1).液体食品はマイクロプレートを介して染色・提供されるため、マイクロプレート分光光度計を用いて食品の光学吸光度の測定が得られる(図3)。この方法で、消費は、消費の前後の吸光度を比較し、その後、消費前に分配される既知の体積にこの割合を適用することによって決定される。これは、染色された媒体の異なる体積の吸光度を測定することによって経験的に検証された(図3B)。
このアッセイを開発するには、消費の吸光度ベースの定量化を活用できる装置が必要でした。マイクロプレート形式のハエのテストは、食品を分配するために使用されるマイクロプレートを補完し、カプラの形状を調整することによって複数のプレートフォーマット(例えば、6-、12-、48-、または96-ウェル形式)から選択する柔軟性を可能にするため、魅力的です。個々のフライ培養を可能にするために96ウェルマイクロプレート形式が選ばれました。
3Dプリントデバイス(図1)は、96ウェル培養プレートを持つ1536ウェルフィーダープレートを正確に向け、各フライが最大4つのフィーダープレートにアクセスして消費します。さらに、ハエをハウジングプレートに分配するための十分な時間を提供し、アッセイ開始を制御するために、デバイスには、それぞれの井戸にハエを含むバリアストリップを切り替え、違反を防ぐことが含まれます。これらの部品の調達または修正に必要なファイル (補足ファイル S.2–S.3) と、関連する部分に必要な製作手順 (補足ファイル S.4)が提供されています。
MFA は、ショウジョウバエの摂食行動18、21、22を監視するためのより精巧な方法を補完する単純な高スループット方式を提供します。MFAは、食物摂取量を定量化するために使用される他の方法よりも複数の利点を提供します。プレートリーダーを使用して消費を定量化することで、スループットが向上します。これにより、手動測定が不要になり、手動でのデータ入力が不要になります。データは、プログラムによる抽出や処理にも適しています。さらに、スループットが高いほど、特に共同フィーダー設計と比較して、生物学的複製の実現可能な数が増加し、消費の小さな違いを検出する力が大幅に増加します。MFAを使用して、単一の実験者は、アッセイの1泊1回の実行あたり500以上のハエの消費量または好みを定量化することができます。アッセイの実行を重ねることによって、2,000以上のハエを5日間でテストすることができます。最後に、マイクロプレートとカプラ(補助ファイルS.5)の再利用性による長期的なコスト削減があります。MFAを使用すると、アッセイあたりの推定コストは$ 14.80まで低く、機器の前払いコストは$ 127.60です。高価な精密マイクロキャピラリを必要とする古典的なキャピラリーFEeder(CAFE)アッセイを使用して、同等の数の複製に対するアッセイあたりの推定コストは$ 46.08です。したがって、必要な機器の取得に先行投資がある一方で、定期的なコストの削減は、特に繰り返しテストが行われる場合に、大幅な節約につながる可能性があります。
すべてのアッセイと同様に、MFAには一定の制限があります。主に、1536ウェルマイクロプレートを読み取ることができるマイクロプレート分光光度計へのアクセスが必要です。さらに、定量化のための吸光度測定への依存は、この方法を光学的干渉の影響を受けやすい方法にします。これは、テストされたサンプルの小さなサブセットに対して負の消費値として現れます。栄養素、医薬品、医薬品、または毒素が、アッセイと互換性を持つために水溶性でなければならない。
制限にもかかわらず、この方法は、 ショウジョウバエの消費行動を定量化する高スループット方法を提供しています。さらに、カップリングデバイスは、多くのプレートフォーマットを受け入れるように簡単に変更することができ、様々な昆虫種に対応することができます。
The authors have nothing to disclose.
この研究は、国立薬物乱用研究所(U01 DA041613)からTFCMおよびRRHAへの助成金によって支えられた。
0.25 mm Diameter Needers | Rave Scientific | RS-MN-52-001012 | |
0.45 µm Syringe Filters | Olympus Plastics | 25-245 | |
10 mL Disposable Syringe | EXELINT | 26200 | |
Agarose | Fisher Scientific | BP1600 | |
Barrier Strips (Laser Cut) | Ponoko | – | Material: clear PETG, 0.5mm thickness; Supplementary File: |
Centrifuge 5810 R | Eppendorf | 22625501 | |
Centrifuge Rotor A-4-62 with micro-titer plate buckets | Eppendorf | 22638041 | |
FD&C Blue #1 | Spectrum Chemical Mfg Corp | FD110 | |
Film Sealing Paddle | Fisher Scientific | 50-563-280 | |
Flystuff Flypad | Genesee Scientific | #59-114 and #59-119 | CO2 Anesthesia: The Flypads come in two sizes, either of which is appropriate |
Microplate Coupler (3D Printed) | Shapeways | – | Material: Multi Jet Fusion nylon (MJF PA12); Supplementary File: |
Microplate Lids | Greiner Bio-One | 656170 | |
Molecular Devices SpectraMax iD5 | Molecular Devices | – | Any microplate reader with 1536-well resolution will do. |
Needle Probe Holder | Rave Scientific | RS-MN-52-001000 | |
Polyester Sealing Film | Excel Scientific, Inc. | 100-SEAL-PLT | |
Polystyrene 96-well microplates | Greiner Bio-One | 655101 | |
Polystyrene, Bottomless, 15396-well microplates | Greiner Bio-One | 783000 | Made to Order; allow for adequate lead time when purchasing. |
Rubber Bands | |||
Sucrose | Sigma | S7903 | |
Weather Stripping | 1/2" x 1/8" High Density Self Adhesive Neoprene Rubber | ||
Yeast Extract | Fisher Scientific | BP1422 |