Descriviamo sistemi a solvente acquoso e organico per l’elettropolimerizzazione del poli(3,4-etilendiaossitiofene) per creare strati sottili sulla superficie dei microelettrodi d’oro, che vengono utilizzati per rilevare analiti a basso peso molecolare.
Sono descritti due diversi metodi per la sintesi di poli(3,4-etilenediossitiofene) (PEDOT) su elettrodi d’oro, utilizzando l’elettropolimerizzazione del monomero 3,4-etilendiossitiofene (EDOT) in una soluzione acquosa e una organica. La voltammetria ciclica (CV) è stata utilizzata nella sintesi di strati sottili PEDOT. Il perclorato di litio (LiClO4) è stato utilizzato come drogante in entrambi i sistemi a solvente acquoso (acquoso/acetonitrile (ACN)) e organico (carbonato di propilene (PC)). Dopo che lo strato PEDOT è stato creato nel sistema organico, la superficie dell’elettrodo è stata acclimatata da cicli successivi in una soluzione acquosa per l’uso come sensore per campioni acquosi.
L’uso di un metodo di elettropolimerizzazione a base acquosa ha il potenziale vantaggio di rimuovere la fase di acclimatazione per avere un tempo di preparazione del sensore più breve. Sebbene il metodo acquoso sia più economico e rispettoso dell’ambiente rispetto al metodo del solvente organico, nella soluzione organica si ottiene una formazione superiore di PEDOT. Le superfici degli elettrodi PEDOT risultanti sono state caratterizzate dalla microscopia elettronica a scansione (SEM), che ha mostrato la crescita costante di PEDOT durante l’elettropolimerizzazione dalla soluzione organica di PC, con una rapida crescita di tipo frattale su microelettrodi d’oro (Au).
I polimeri elettricamente conduttori sono materiali organici ampiamente utilizzati nei dispositivi bioelettronici per migliorare le interfacce. Simile ai polimeri convenzionali, i polimeri conduttori sono facili da sintetizzare e sono flessibili durante la lavorazione1. I polimeri conduttori possono essere sintetizzati utilizzando metodi chimici ed elettrochimici; tuttavia, gli approcci di sintesi elettrochimica sono particolarmente favorevoli. Ciò è dovuto principalmente alla loro capacità di formare film sottili, consentire il doping simultaneo, catturare molecole nel polimero conduttore e, soprattutto, la semplicità del processo di sintesi1. Inoltre, i polimeri conduttori formano nanostrutture uniformi, fibrose e irregolari, saldamente aderenti alla superficie dell’elettrodo, che aumentano la superficie attiva dell’elettrodo2.
Nel 1980, alcuni polieterocicli, come polipirrolo, polianilina, politiofene e PEDOT, sono stati sviluppati che hanno mostrato una buona conduttività, facilità di sintesi e stabilità 3,4. Sebbene il polipirrolo sia meglio compreso rispetto ad altri polimeri (ad esempio, derivati del politiofene), è soggetto a ossidazione irreversibile5. Pertanto, PEDOT ha alcuni vantaggi rispetto al resto in quanto ha uno stato ossidativo molto più stabile e mantiene l’89% della sua conduttività rispetto al polipirrolo in condizioni simili6. Inoltre, PEDOT è noto per l’elevata elettroconduttività (~ 500 S / cm) e un gap di banda moderato (cioè, band gap o gap energetici sono regioni senza carica e si riferiscono alla differenza di energia tra la parte superiore di una banda di valenza e la parte inferiore di una banda di conduzione)7.
Inoltre, il PEDOT ha proprietà elettrochimiche, ha bisogno di potenziali inferiori per essere ossidato ed è più stabile nel tempo rispetto al polipirrolo dopo essere stato sintetizzato7. Ha anche una buona trasparenza ottica, il che significa che il suo coefficiente di assorbimento ottico, specialmente sotto forma di PEDOT-polistirene solfonato (PEDOT-PSS), è nella regione visibile dello spettro elettromagnetico a 400-700 nm7. Nella formazione elettrochimica di PEDOT, i monomeri EDOT si ossidano all’elettrodo di lavoro per formare cationi radicalici, che reagiscono con altri cationi radicali o monomeri per creare catene PEDOT che si depositano sulla superficie dell’elettrodo1.
Diversi fattori di controllo sono coinvolti nella formazione elettrochimica dei film PEDOT, come elettrolita, tipo elettrolitico, configurazione dell’elettrodo, tempo di deposizione, tipo di dopante e temperatura del solvente1 PEDOT può essere generato elettrochimicamente facendo passare la corrente attraverso una soluzione elettrolitica appropriata. Diversi elettroliti come liquidi acquosi (ad esempio, PEDOT-PSS), organici (ad esempio, PC, acetonitrile) e liquidi ionici (ad esempio, 1-butil-3-metilimidazolio tetrafluoroborato (BMIMBF4)) possono essere utilizzati8.
Uno dei vantaggi dei rivestimenti PEDOT è che può ridurre significativamente l’impedenza di un elettrodo Au nella gamma di frequenza 1 kHz di due o tre ordini di grandezza, il che rende utile aumentare la sensibilità del rilevamento elettrochimico diretto dell’attività neurale9. Inoltre, la capacità di accumulo di carica degli elettrodi modificati in PEDOT aumenta e si traduce in risposte potenziali più rapide e più basse quando la carica di stimolazione viene trasferita attraverso PEDOT10. Inoltre, quando il polistirene solfonato (PSS) viene utilizzato come drogante per la formazione di PEDOT su array di microelettrodi Au, crea una superficie ruvida e porosa con un’elevata superficie attiva, un’impedenza di interfaccia inferiore e una maggiore capacità di iniezione di carica11. Per la fase di elettropolimerizzazione, EDOT-PSS di solito fa una dispersione in un elettrolita acquoso.
Tuttavia, EDOT è solubile in cloroformio, acetone, ACN e altri solventi organici come PC. Pertanto, in questo studio, è stata utilizzata una miscela di acqua con un piccolo volume di ACN in un rapporto 10: 1 per produrre una soluzione EDOT solubile prima dell’inizio dell’elettropolimerizzazione. Lo scopo dell’utilizzo di questo elettrolita acquoso è quello di omettere la fase di acclimatazione nella preparazione del microelettrodo modificato da PEDOT e abbreviare i passaggi. L’altro elettrolita organico utilizzato per confrontare con l’elettrolita acquoso / ACN è PC. Entrambi gli elettroliti contengono LiClO4 come drogante per aiutare a ossidare il monomero EDOT e formare il polimero PEDOT.
I microelettrodi sono elettrodi di lavoro voltammetrici con diametri inferiori rispetto ai macroelettrodi, di dimensioni pari o inferiori a decine di micrometri. I loro vantaggi rispetto ai macroelettrodi includono un maggiore trasporto di massa dalla soluzione verso la superficie dell’elettrodo, la generazione di un segnale allo stato stazionario, una minore caduta di potenziale ohmico, una capacità a doppio strato inferiore e un rapporto segnale-rumore aumentato12. Simile a tutti gli elettrodi solidi, i microelettrodi devono essere condizionati prima dell’analisi. La tecnica di pretrattamento o attivazione appropriata è la lucidatura meccanica per ottenere una superficie liscia, seguita da una fase di condizionamento elettrochimico o chimico, come il potenziale ciclo su un particolare intervallo in un elettrolitaadatto 13.
CV è molto comunemente usato nella polimerizzazione elettrochimica di PEDOT inserendo elettrodi in una soluzione monomerica che coinvolge un solvente adatto ed elettrolita dopante. Questa tecnica elettrochimica è utile nel fornire informazioni di direzione come la reversibilità dei processi di drogaggio dei polimeri e il numero di elettroni trasferiti, i coefficienti di diffusione degli analiti e la formazione di prodotti di reazione. Questo articolo descrive come due diversi elettroliti utilizzati per l’elettropolimerizzazione di PEDOT possono generare sottili film di nanostruttura con una potenziale applicazione di rilevamento che dipende dalla morfologia e da altre proprietà intrinseche.
Il metodo CV consente la misurazione rapida e semplice di diversi analiti in alimenti, vino e bevande, estratti vegetali e persino campioni biologici. Questa tecnica produce un’ampia varietà di dati, inclusi i potenziali di picco di ossidazione / riduzione, i valori di corrente di picco dell’analita bersaglio (proporzionale alla concentrazione) e tutti gli altri valori attuali e potenziali dopo ogni esecuzione CV. Sebbene l’utilizzo del CV sia relativamente semplice, i dati raccolti a volte devono essere convertiti da f…
The authors have nothing to disclose.
Grazie al finanziamento fornito dal Ministero neozelandese delle imprese, dell’innovazione e dell’occupazione (MBIE) nell’ambito del programma “High Performance Sensors”.
Acetonitrile | Baker Analyzed HPLC Ultra Gradient Solvent | 75-05-8 | HPLC grade |
Alumina polishing pad | BASi, USA | MF-1040 | tan/velvet color |
Belgian chocolate milk | Puhoi Valley dairy company, Auckland, NZ | _ | Buy from local supermarket |
Caramel/white chocolate milk | Puhoi Valley dairy company, Auckland, NZ | _ | Buy from local supermarket |
CH instrument | CH instruments, Inc. USA | _ | Model CHI660E |
Counter electrode | BASi, USA | MW-1032 | 7.5 cm long platinum wire (0.5 mm diameter) auxiliary/counter electrode, 99.95% purity |
Disodium hydrogen phosphate (Na2HPO4, 2H2O) | Scharlau Chemie SA, Barcelona, Spain | 10028-24-7 | Weigh 17.8 g |
DURAN bottle | University of Auckland | _ | The glasswares were made locally at the University of Auckland |
Electrochemical cell | BASi, USA | MF-1208 | 5-15 mL volume, glass |
Electrode Polishing Alumina Suspension | BASi, USA | CF-1050 | 7 mL of 0.05 µm particle size alumina polish |
Espresso milk | Puhoi Valley dairy company, Auckland, NZ | _ | Buy from local supermarket |
3,4-Ethylenedioxythiophene (EDOT), 97% | Sigma-Aldrich | 126213-50-1 | Take 10.68 μL from bottle |
FEI ESEM Quanta 200 FEG | USA | _ | SEM equipped with a Schottky field emission gun (FEG) for optimal spatial resolution. The instrument can be used in high vacuum mode (HV), low-vacuum mode (LV) and the so called ESEM (Environmental SEM) mode. |
Gold microelectrode | BASi, USA | MF-2006 | Working electrode (10 μm diameter) |
Lithium perchlorate, ACS reagent, ≥95% | Sigma-Aldrich | 7791-03-9 | Make 0.1 M solution |
Micropipettes | Eppendorf | _ | 10-100 μL and 100-1000 volumes |
MilliQ water | Thermo Scientific, USA | _ | 18.2 MΩ/cm at 25°C, Barnstead Nanopure Diamond Water Purification System |
Propylene carbonate, Anhydrous, 99.7% | Sigma-Aldrich | 108-32-7 | Take 20 mL from bottle |
Reference electrode | BASi, USA | MF-2052 | Silver/silver chloride (Ag/AgCl) electrode to be kept in 3 M sodium chloride |
Replacement glass polishing plate | BASi, USA | MF-2128 | Glass plate as a stand to attach the polishing pad on it |
Sodium dihydrogen phosphate (NaH2PO4, 1H2O) | Sigma-Aldrich | 10049-21-5 | Weigh 13.8 g |
Sodium hydroxide pearls, AR | ECP-Analytical Reagent | 1310-73-2 | Make 0.1 M solution |
Sodium perchlorate, ACS reagent, ≥98% | Sigma-Aldrich | 7601-89-0 | Make 0.1 M solution |
Sulfuric acid (98%) | Merck | 7664-93-9 | Make 0.5 M solution |
Uric acid | Sigma-Aldrich | 69-93-2 | Make 1 mM solution |
Whole milk | Anchor dairy company, Auckland, NZ | Blue cap milk, buy from local supermarket |