Aqui demonstramos uma técnica otimizada para avaliar o reparo da ferida usando a pele humana ex vivo combinada com uma abordagem de coloração de montagem inteira. Essa metodologia fornece uma plataforma pré-clínica para avaliação de potenciais terapias de feridas.
As feridas crônicas não curativas, que afetam principalmente idosos e diabéticos, são uma área significativa de necessidade clínica não atendida. Infelizmente, os tratamentos atuais de feridas crônicas são inadequados, enquanto os modelos pré-clínicos disponíveis prevêem mal a eficácia clínica de novas terapias. Aqui descrevemos um modelo pré-clínico de alta produtividade para avaliar múltiplos aspectos da resposta de reparação da pele humana. Feridas de espessura parcial foram criadas na pele ex vivo humana e cultivadas em um curso de tempo de cura. Biópsias de feridas de pele foram coletadas em fixação para o procedimento de coloração de todo o montagem. As amostras fixas foram bloqueadas e incubadas em anticorpos primários, com detecção obtida por anticorpo secundário conjugado fluorescentemente. As feridas foram contra-manchadas e imagens via microscopia confocal antes de calcular o fechamento percentual da ferida (re-epitelialização) em cada biópsia. Aplicando este protocolo, revelamos que 2 mm de feridas excisionais criadas na pele saudável do doador são totalmente re-epitelializadas até o dia 4-5 pós-ferida. Pelo contrário, as taxas de fechamento de feridas de pele diabéticas são significativamente reduzidas, acompanhadas de reforma de barreira perturbada. A combinação do ferimento da pele humana com uma nova abordagem de coloração de montagem total permite um método rápido e reprodutível para quantificar o reparo da ferida ex vivo. Coletivamente, este protocolo fornece uma valiosa plataforma humana para avaliar a eficácia de potenciais terapias de feridas, transformando testes pré-clínicos e validação.
As feridas crônicas e não curativas, altamente prevalentes em idosos e diabéticos, são uma área não apreciada de necessidade clínica não atendida. Essas feridas representam uma grande carga física e psicológica para os pacientes e custam bilhões aos prestadores de cuidados de saúde a cada ano para tratar1. Apesar da melhor compreensão da biologia das feridas e dos avanços tecnológicos, até 40% das feridas crônicas ainda não conseguem cicatrizar após o melhor cuidado padrão2. Assim, 14-26% dos pacientes com úlceras diabéticas no pé requerem posteriormente amputação3, enquanto a taxa de mortalidade pós-amputação de 5 anos é de aproximadamente 70%4. Como resultado, há uma exigência urgente de desenvolver novas terapias eficazes para melhorar a qualidade de vida do paciente, reduzindo a carga substancial de saúde imposta por feridas de cura ruins. Modelos pré-clínicos pouco preditivos continuam a ser um obstáculo significativo para o desenvolvimento de novas terapias eficazes.
O reparo de feridas é um processo dinâmico e multifacetado que envolve uma gama diversificada de tipos celulares, inúmeros níveis de comunicação e um ambiente tecidual que é temporariamente remodelado. A cicatrização da pele é sustentada por quatro grandes estágios reparados: hemostasia, inflamação, proliferação e remodelação matricial. Esses estágios, em última análise, atuam para prevenir a perda de sangue e a infecção, fechar a superfície da ferida (um processo chamado de re-epitelialização) e devolver a pele a um estado ileso5. As feridas crônicas estão associadas à etiologia diversificada e à perturbação generalizada aos processos de cura6,complicando ainda mais a identificação de alvos terapêuticos. No entanto, uma ampla gama de modelos foram desenvolvidos para elucidar os condutores moleculares e celulares da patologia da ferida e testar novas abordagens terapêuticas7.
O modelo de reparo de ferida mais usado é o ferimento agudo no rato. Os camundongos são altamente tratáveis para estudos mecanicistas e fornecem modelos validados de envelhecimento e diabetes8. Apesar das semelhanças gerais mostradas entre a cura do camundongo e do ser humano, as diferenças entre as espécies na estrutura da pele e na dinâmica de cura permanecem. Isso significa que a maioria das pesquisas de ferida murina não se traduz facilmente para a clínica9. Consequentemente, houve um impulso para sistemas humanos in vitro e ex vivo com alta aplicabilidade e tradução10,11.
Aqui fornecemos um protocolo aprofundado para a realização de feridas excisionais de espessura parcial na pele humana ex vivo. Também descrevemos nossa abordagem de coloração de montagem inteira como um método altamente reprodutível de avaliação da cicatrização da pele humana ex vivo. Mostramos a trajetória de reparação epidérmica (re-epitelialização) e posterior formação de barreiras, avaliando a taxa de fechamento de feridas em pele humana saudável versus diabética. Finalmente, demonstramos como a coloração de montagem inteira pode ser adaptada para uso com uma gama de anticorpos para avaliar vários aspectos da resposta à cura.
Neste protocolo experimental, descrevemos um método otimizado para avaliar o fechamento de feridas na pele ex vivo humana usando coloração de tecido de montagem inteira. Este é um recurso importante para permitir uma avaliação crítica de possíveis tratamentos de feridas e proporcionar uma melhor compreensão da resposta de reparação de feridas humanas. Publicamos avaliação de cura em feridas de pele ex vivo anteriormente12,13, mas nestes relatos a abordagem de coloração de todo o montagem não foi usada para medir o fechamento da ferida. A coloração de montagem total é muito mais fácil e requer menos experiência técnica do que a histologia padrão, que envolve parafina ou incorporação de OCT e secção de amostras. O procedimento de montagem total também reduz a variabilidade experimental, permitindo a quantificação de toda a ferida e não apenas uma única seção transversa em uma posição definida dentro do tecido (ver Figura 4B para ilustração comparativa). Apoiamos plenamente a importância de quantificar a cicatrização de toda a estrutura de feridas não simétricas, conforme claramente descrito por Rhea e Dunnwald para feridas agudas murinas14. Esses autores mostraram a importância da secção serial de feridas excisionais in vivo para medidas reprodutíveis e precisas da morfologia da ferida. A secção serial pode ser igualmente aplicada a feridas ex vivo humanas; no entanto, para quantificação precisa do fechamento da ferida e re-epitelialização, a coloração de alto rendimento de montagem total deve ser o método preferido. Observamos que este protocolo de coloração de montagem total também deve ser compatível com o processamento subsequente (cera ou OCT) para análise histológica tradicional.
A coloração de montagem total não é sem desvantagens. Embora proporcione maior reprodutibilidade em experimentos de cicatrização de feridas, requer o uso de mais tecido para análise do que técnicas histológicas padrão. Este pode ser um problema onde o acesso ao tecido é limitado, particularmente quando vários anticorpos precisam ser avaliados. Uma abordagem alternativa seria empregar um método de ferida incisional onde a largura da ferida é relativamente uniforme e a variabilidade é reduzida (como mostrado em camundongos e feridas humanas15,16). No entanto, as feridas excisionais permanecem mais aplicáveis à maioria dos tipos de feridas patológicas17.
Neste estudo, foram criadas feridas de espessura parcial de 2 mm no centro de explants de pele de 6 mm. Este método pode ser otimizado para tamanhos alternativos de feridas excisionais e explantar em diferentes profundidades de pele18. Além disso, a força necessária para gerar feridas vai variar entre os doadores, onde a pele envelhecida exigirá menos força para a biópsia. Também evitaríamos usar a pele exibindo estrias proeminentes ou outras alterações estruturais. Validamos uma série de anticorpos para considerar diferentes aspectos da resposta de cura ex vivo. Este protocolo também pode ser usado com outros anticorpos relevantes para a pele, onde concentrações de anticorpos e tempos de incubação precisarão ser otimizados. No entanto, acreditamos que nosso protocolo é mais adequado à quantificação absoluta do fechamento total da ferida, seguido pela avaliação espacial de proteínas específicas de interesse. Embora o montagem integral forneça uma resolução reduzida de imunolocalização versus análise histológica padrão das seções teciduais, fornece informações 3D adicionais que estão faltando da histologia 2D padrão.
Uma ressalva de avaliar a cura nos modelos ex vivo skin versus in vivo é que ela carece de uma resposta sistêmica. Um aspecto importante da reparação da ferida é a inflamação e a subsequente granulação tecidual, que é causada por um influxo de células inflamatórias e células endoteliais da vasculatura19. Apesar dessa limitação, a pele ex vivo ainda proporciona uma melhor recapitulação da cicatrização clínica do que os ensaios de feridas baseadas em células. Experimentos in vitro em geral envolvem monocamadas ou co-culturas do tipo celular único cultivadas no plástico da cultura tecidual, enquanto a pele ex vivo fornece um ambiente nativo para explorar o comportamento celular. Mais recentemente, surgiram vários sistemas equivalentes à pele, onde a pele é cultivada em um ambiente laboratorial a partir de matriz artificial e células isoladas da pele20,21. Embora esses modelos imitem a pele humana melhor do que a maioria das abordagens in vitro, eles ainda não simulam totalmente o ambiente de tecido nativo e geralmente são muito frágeis para ferir reprodutivelmente. Além disso, nós (e outros) demonstramos que o tecido da pele humana ex vivo retém células imunes residentes, o que, sem dúvida, contribuirá para a reparação22,23. O trabalho futuro deve agora focar na ampliação da viabilidade e imunocompetência do modelo ex vivo para avaliação de cura em estágio final24. Uma opção é o avanço de tecnologias promissoras de órgãos em um chip capazes de prolongar a viabilidade tecidual e manter a arquitetura nativa da pele por até duas semanas na cultura25. Os modelos ex vivo também começaram a considerar a importância da resposta inflamatória da pele incorporando com sucesso células imunes, como neutrófilos, no tecido hospedeiro26 ou injetando tecido hospedeiro com anticorpos para provocar uma reação imune27. Esperamos que essas descobertas abram caminho para o desenvolvimento de métodos mais refinados e traduzíveis no futuro.
Um grande benefício do uso da pele ex vivo para medir o fechamento da ferida é a capacidade de comparar as taxas de cicatrização em tecidos saudáveis (por exemplo, não diabéticos) versus patológicos (por exemplo, diabéticos ou idosos). Aqui mostramos que a re-epitelialização e a formação de barreiras são de fato prejudicadas em feridas diabéticas versus saudáveis ex vivo. De fato, isso fornece um caminho para avaliação pré-clínica da reparação patológica, onde o envelhecimento e o diabetes são os principais fatores de risco para o desenvolvimento de feridas crônicas1. Enquanto existem modelos patológicos in vitro, como células isoladas de tecido envelhecido e diabético, ou células cultivadas em alta glicose para imitar hiperglicemia28,29, essas células podem perder rapidamente seu fenótipo uma vez removido do microambiente in vivo. Um componente importante do ambiente de cura patológica extrínseca é a matriz dérmica, que é alterada tanto no envelhecimento quanto no diabetes30. De fato, essa matriz perturbada afeta o comportamento dos fibroblastos residentes e ingênuos31,32. Assim, a importância de estudar células em seu ambiente de tecido hospedeiro não pode ser subestimada.
Em resumo, nosso protocolo fornece uma importante plataforma para quantificar a re-epitelialização de feridas humanas, explorar fatores regulatórios e testar a validade e eficácia de potenciais terapêuticas12,13. Embora os testes pré-clínicos ainda exijam abordagens in vivo, uma estratégia combinada usando tecido humano ex vivo e ferida in vivo murine deve refinar a via pré-clínica, reduzindo o uso de animais enquanto aumenta a tradução de espécies cruzadas.
The authors have nothing to disclose.
Gostaríamos de agradecer aos senhores deputados Paolo Matteuci e George Smith pelo fornecimento de tecido de pacientes. Também somos gratos à Srta. Amber Rose Stafford por ajudar na coleta de tecidos e no Apelo Daisy por fornecer instalações de laboratório.
50 mL Falcon Tubes | Falcon | 352070 | For skin washing |
1.5 ml TubeOne Microcentrifuge Tubes, Natural (Sterile) | Starlab | S1615-5510 | For whole-mount staining |
48-Well CytoOne Plate, TC-Treated | Starlab | CC7682-7548 | For whole-mount staining |
Acetic Acid Glacial | Fisher Chemical | A/0400/PB15 | Part of fixative |
Alkyltrimethylammonium Bromide | Sigma-Aldrich | M7635 | Part of fixative |
Anti-Alpha Smooth Muscle Actin Antibody [1A4] | Abcam | ab7817 | Stains blood vessels |
Anti-Collagen I Antibody | Abcam | ab34710 | Stains collagen |
Anti-Cytokeratin 14 Antibody [LL002] | Abcam | ab7800 | Stains epidermis |
CD1A Antibody (CTB6) | Santa Cruz Biotechnology | sc-5265 | Stains Langerhans cells |
DAPI (4',6-diamidino-2-phenylindole, dihydrochloride) | Thermo Fisher Scientific | 62247 | Counterstain for cell nuclei |
Falcon 60mm Petri dishes | Falcon | 353004 | Human ex vivo culture |
Fibronectin Antibody (EP5) | Santa Cruz Biotechnology | sc-8422 | Stains fibronectin |
Formaldehyde, Extra Pure, Solution 37-41%, SLR | Fisher Chemical | F/1501/PB17 | Part of fixative |
Gauze Swabs | Medisave | CS1650 | To clean skin |
Gibco™ Antibiotic-Antimycotic Solution | Thermo Fisher Scientific | 15240062 | Human ex vivo culture |
Gibco DMEM, high glucose, no glutamine | Thermo Fisher Scientific | 11960044 | Human ex vivo culture |
Gibco Fetal Bovine Serum | Thermo Fisher Scientific | 10500064 | Human ex vivo culture |
Gibco HBSS, no calcium, no magnesium | Thermo Fisher Scientific | 14170088 | Human ex vivo culture |
Gibco L-Glutamine (200 mM) | Thermo Fisher Scientific | 25030081 | Human ex vivo culture |
Hydrogen Peroxide | Sigma-Aldrich | H1009-100ML | For immunoperoxidase staining |
ImageJ Software | National Institutes of Health | N/A | For image analysis |
Invitrogen IgG (H+L) Cross-Adsorbed Goat anti-Mouse, Alexa Fluor 488 | Thermo Fisher Scientific | A11001 | Secondary antibody used depends on required fluorochromes and primary antibody |
Invitrogen IgG (H+L) Cross-Adsorbed Goat anti-Rabbit, Alexa Fluor 594 | Thermo Fisher Scientific | A11012 | Secondary antibody used depends on required fluorochromes and primary antibody |
Invitrogen LIVE/DEAD Viability/Cytotoxicity Kit, for mammalian cells | Thermo Fisher Scientific | L3224 | For viability assessment of tissue |
Iris Forceps, 10 cm, Curved, 1×2 teeth | World Precision Instruments | 15917 | To create wounds |
Iris Scissors, 11 cm, Curved, SuperCut, Tungsten Carbide | World Precision Instruments | 501264 | To create wounds |
Iris Scissors, 11 cm, Straight, SuperCut, Tungsten Carbide | World Precision Instruments | 501263 | To remove adipose tissue |
Keratin 1 Polyclonal Antibody, Purified | Biolegend | 905201 | Stains epidermis |
Keratin 14 Polyclonal Antibody, Purified | Biolegend | 905301 | Stains epidermis |
LSM 710 Confocal Laser Scanning Microscope | Carl Zeiss | Discontinued | For fluorescent imaging |
Merck Millipore Absorbent pads | Merck Millipore | AP10045S0 | Human ex vivo culture |
Merck Millipore Nylon Hydrophilic Membrane Filters | Merck Millipore | HNWP04700 | Human ex vivo culture |
Normal Goat Serum Solution | Vector Laboratories | S-1000-20 | Animal serum used depends on secondary antibody |
Phosphate Buffer Solution | Sigma-Aldrich | P3619 | For wash buffer |
Sodium Azide | Sigma-Aldrich | S2002 | For blocking buffer |
Sodium Chloride | Fisher Bioreagents | BP358-212 | Part of fixative |
Sterilisation Pouches | Medisave | SH3710 | To sterilise instruments |
Stiefel 2mm biopsy punches | Medisave | BI0500 | For partial thickness wound |
Stiefel 6mm biopsy punches | Medisave | BI2000 | For outer explant |
Thermo Scientific Sterilin Standard 90mm Petri Dishes | Thermo Fisher Scientific | 101VR20 | To prepare skin |
Triton X-100 | Fisher Chemical | T/3751/08 | For wash buffer |
VECTASTAIN Elite ABC-HRP Kit, Peroxidase (Rabbit IgG) | Vector Laboratories | PK-6101 | For immunoperoxidase staining; HRP kit used depends on primary antibody |
Vector NovaRED Substrate Kit, Peroxidase (HRP) | Vector Laboratories | SK-4800 | For immunoperoxidase staining |
Wireless Digital Microscope | Jiusion | N/A | For brightfield imaging |