Summary

小分子的微晶电子衍射

Published: March 15, 2021
doi:

Summary

在这里,我们描述了我们实验室开发的用于制备用于微晶电子衍射(MicroED)实验的小分子晶体粉末的程序。

Abstract

描述了制备用于微晶电子衍射(MicroED)实验的小分子样品的详细方案。MicroED已被开发用于使用标准电子冷冻显微镜(cryo-EM)设备解决蛋白质和小分子的结构。通过这种方式,小分子、肽、可溶性蛋白和膜蛋白最近被测定到高分辨率。这里介绍了以药物卡马西平为例制备小分子药物网格的方案。提出了筛选和收集数据的协议。整个过程中的其他步骤(如数据集成、结构确定和优化)将在别处介绍。准备小分子网格所需的时间估计不到30分钟。

Introduction

微晶电子衍射(MicroED)是一种电子冷冻显微镜(cryo-EM)方法,用于从亚微米尺寸的晶体12中确定原子分辨率结构。将晶体应用于标准透射电子显微镜(TEM)网格,并通过投入液态乙烷或液氮进行冷冻。然后将网格加载到在低温下运行的TEM中。晶体位于网格上并筛选初始衍射质量。连续旋转 MicroED数据是从筛选晶体的子集中收集的,其中数据使用快速相机保存为电影3。这些电影被转换为标准的晶体学格式,并且处理方式几乎与X射线晶体学实验4相同。

MicroED最初是为了研究蛋白质微晶12而开发的。蛋白质晶体学的一个瓶颈是为传统的同步加速器X射线衍射实验生长出大而有序的晶体。由于电子与比X射线强几个数量级的物质相互作用,产生可检测衍射所需的晶体尺寸的限制要小得多5。此外,弹性与非弹性散射事件的比例对电子更有利,这表明可以在较小的整体暴露5下收集更多有用的数据。不断发展使得MicroED数据可以从最具挑战性的微晶6789中收集。

最近,MicroED已被证明是从明显无定形的材料10,111213确定小分子药物结构的有力工具。这些粉末可以直接来自一瓶购买的试剂、纯化柱,甚至可以来自将药丸粉碎成细粉10。这些粉末肉眼看起来是无定形的,但可以完全由纳米晶体组成,或者仅以更大的非结晶、无定形部分含有微量的纳米晶体沉积物。将材料应用于网格是容易的,晶体鉴定、筛选和数据收集的后续步骤甚至可能在不久的将来实现自动化14。虽然其他人可能使用不同的方法来制备样品和数据收集,但这里详细介绍了 Gonen 实验室开发和使用的用于制备 MicroED 的小分子样品和数据收集的协议。

Protocol

1. 制备小分子样品 将少量(0.01 – 1 mg)粉末、液体或固体转移到小瓶或管中。 对于已经呈粉末形式的样品,使用盖子密封试管,直到需要样品为止。在尝试方法1(步骤3)或步骤2(步骤4)之前,将液体样品干燥成粉末。注意:溶解在液体中的样品可以使用下面的方法3(5.X) 2. 准备透射电镜网格 注意:一些带有自动加载系统的TEM要?…

Representative Results

MicroED是一种冷冻电镜方法,它利用电子和物质之间的强相互作用,可以研究消失的小晶体12,13。在这些步骤之后,有望从微晶中收集晶体学格式的衍射电影(视频1)。在这里,使用卡马西平12演示该技术。结果显示了来自在TEM网格上鉴定的卡马西平微晶的连续旋转MicroED数据集(视频1)。一个好的数据集具有…

Discussion

样品制备通常是一个迭代过程,在筛选和数据收集后进行优化。对于小分子样品,通常谨慎的做法是首先尝试网格制备而不对网格进行辉光放电,因为许多药物往往是疏水性的1011。如果网格的纳米晶沉积物太少,最好在第一次对网格进行辉光放电后重试。可能是冻干粉末的晶体太大太厚,无法收集良好的数据。在这些情况下,可以从较大晶体的边缘?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Gonen实验室得到了霍华德休斯医学研究所的资金支持。这项研究得到了美国国立卫生研究院P41GM136508的支持。

Materials

0.1-1.5mL Eppendorf tubes Fisher Scientific 14-282-300 Any vial or tube will do.
Autogrid clips Thermo-Fisher 1036173 Clipped grids are not required for MicroED. They are required for Thermo-Fisher TEMs equipped with an autoloader system.
Autogrid C-rings Thermo-Fisher 1036171
Carbamazapine Sigma C4024-1G Any amount will suffice for these experiments
CMOS based detector Thermo-Fisher CetaD 16M We used a CetaD 16M, but any detector with rolling shutter mode or sufficiently fast readout is acceptable. 
Delphi software Thermo-Fisher N/A Software on Thermo-Fisher TEM systems that allows for manual rotation of the sample stage
EPU-D software Thermo-Fisher N/A Commercial software for the acquisition of MicroED data
Glass cover slides Hampton HR3-231
Glow discharger Pelco easiGlow
High PrecisionTweezers EMS 78325-AC Any high precision tweezer will do
Liquid nitrogen vessel Spear Lab FD-800 A standard foam vessel for handling specimens under liquid nitrogen – 800mL
SerialEM software UC Boulder N/A Free software distributed by D. Mastronarde. Department of Molecular, Cellular, and Developmental Biology
TEM grids Quantifoil/EMS Q310CMA Multi-A 300 mesh grids were used here, but any thin carbon grids will work. For these small molecules, we suggest starting with continuous carbon. 
transmission electron microscope (TEM) Thermo-Fisher Talos Arctica
Whatman circular filter paper Millipore-Sigma WHA1001090 90mm or larger

Referenzen

  1. Shi, D., Nannenga, B. L., Iadanza, M. G., Gonen, T. Three-dimensional electron crystallography of protein microcrystals. eLife. 2, 01345 (2013).
  2. Nannenga, B. L., Shi, D., Leslie, A. G. W., Gonen, T. High-resolution structure determination by continuous-rotation data collection in MicroED. Nature Methods. 11 (9), 927-930 (2014).
  3. Hattne, J., Martynowycz, M. W., Penczek, P. A., Gonen, T. MicroED with the Falcon III direct electron detector. IUCrJ. 6 (5), 921-926 (2019).
  4. Hattne, J., et al. MicroED data collection and processing. Acta Crystallographica Section A Foundations and Advances. 71 (4), 353-360 (2015).
  5. Henderson, R. The potential and limitations of neutrons, electrons and X-rays for atomic resolution microscopy of unstained biological molecules. Quarterly Reviews of Biophysics. 28 (2), 171-193 (1995).
  6. Martynowycz, M. W., et al. MicroED structure of the human adenosine receptor determined from a single nanocrystal in LCP. BioRxiv. , 316109 (2020).
  7. Martynowycz, M. W., Zhao, W., Hattne, J., Jensen, G. J., Gonen, T. Collection of continuous rotation MicroED data from ion beam-milled crystals of any size. Structure. 27 (3), 545-548 (2019).
  8. Martynowycz, M. W., Gonen, T. Ligand incorporation into protein microcrystals for MicroED by on-grid soaking. Structure. , (2020).
  9. Martynowycz, M. W., Khan, F., Hattne, J., Abramson, J., Gonen, T. MicroED structure of lipid-embedded mammalian mitochondrial voltage-dependent anion channel. Proceedings of the National Academy of Sciences. 117 (51), 32380-32385 (2020).
  10. Jones, C. G., et al. The CryoEM method MicroED as a powerful tool for small molecule structure determination. ACS Central Science. 4 (11), 1587-1592 (2018).
  11. Dick, M., Sarai, N. S., Martynowycz, M. W., Gonen, T., Arnold, F. H. Tailoring tryptophan synthase TrpB for selective quaternary carbon bond formation. Journal of the American Chemical Society. 141 (50), 19817-19822 (2019).
  12. Gallagher-Jones, M., et al. Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp. Nature Structural & Molecular Biology. 25 (2), 131-134 (2018).
  13. Ting, C. P., et al. Use of a scaffold peptide in the biosynthesis of amino acid-derived natural products. Science. 365 (6450), 280-284 (2019).
  14. de la Cruz, M. J., Martynowycz, M. W., Hattne, J., Gonen, T. MicroED data collection with SerialEM. Ultramicroscopy. 201, 77-80 (2019).
  15. Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. Journal of Structural Biology. 152 (1), 36-51 (2005).
  16. Schorb, M., Haberbosch, I., Hagen, W. J. H., Schwab, Y., Mastronarde, D. N. Software tools for automated transmission electron microscopy. Nature Methods. 16 (6), 471-477 (2019).
  17. Kabsch, W. XDS. Acta Crystallographica Section D Biological Crystallography. 66 (2), 125-132 (2010).
  18. Winter, G., et al. DIALS: Implementation and evaluation of a new integration package. Acta Crystallographica Section D. 74 (2), 85-97 (2018).
  19. de la Cruz, M. J., et al. Atomic-resolution structures from fragmented protein crystals with the cryoEM method MicroED. Nature Methods. 14 (4), 399-402 (2017).
  20. Shi, D., et al. The collection of MicroED data for macromolecular crystallography. Nature Protocols. 11 (5), 895-904 (2016).
  21. Nannenga, B. L., Shi, D., Hattne, J., Reyes, F. E., Gonen, T. Structure of catalase determined by MicroED. eLife. 3, 03600 (2014).
  22. Martynowycz, M. W., Zhao, W., Hattne, J., Jensen, G. J., Gonen, T. Qualitative Analyses of Polishing and Precoating FIB Milled Crystals for MicroED. Structure. 27 (10), 1594-1600 (2019).

Play Video

Diesen Artikel zitieren
Martynowycz, M. W., Gonen, T. Microcrystal Electron Diffraction of Small Molecules. J. Vis. Exp. (169), e62313, doi:10.3791/62313 (2021).

View Video