Wir beschreiben ein schnelles und robustes Protokoll, um invariante natürliche Killer-T-Zellen (iNKT) aus Mausmilz anzureichern und sie in vitro auf geeignete Zahlen für In-vitro- und In-vivo-Studien zu erweitern.
Invariante Natural Killer T (iNKT)-Zellen sind angeborene T-Lymphozyten, die einen konservierten semi-invarianten T-Zellrezeptor (TCR) exprimieren, der spezifisch für selbst- oder mikrobielle Lipidantigene ist, die durch das nicht-polymorphe MHC-Klasse-I-bezogene Molekül CD1d präsentiert werden. iNKT-Zellen sind in allen Spezies sehr konserviert und ihre Untersuchung wurde durch Mausmodelle erleichtert, einschließlich CD1d-defizienter oder iNKT-defizienter Mäuse, und die Möglichkeit, sie eindeutig in Mäusen und Männern mit CD1d-Tetrameren oder mAbs nachzuweisen, die für die semi-invariante TCR spezifisch sind. iNKT-Zellen sind jedoch selten und müssen erweitert werden, um für jede Studie überschaubare Zahlen zu erreichen. Da sich die Erzeugung primärer Maus-iNKT-Zelllinien in vitro als schwierig erwiesen hat, haben wir ein robustes Protokoll zur Reinigung und Erweiterung von Milz-iNKT-Zellen aus den transgenen iVα14-Jα18-Mäusen (iVα14Tg) eingerichtet, in denen iNKT-Zellen 30-mal häufiger vorkommen. Wir zeigen hier, dass primäre milzhaltige iVα14Tg iNKT-Zellen durch einen immunmagnetischen Trennprozess angereichert werden können, was zu etwa 95-98% reinen iNKT-Zellen führt. Die gereinigten iNKT-Zellen werden durch Anti-CD3/CD28-Kügelchen plus IL-2 und IL-7 stimuliert, was zu einer 30-fachen Ausdehnung pro Tag +14 der Kultur mit 85-99% Reinheit führt. Die expandierten iNKT-Zellen können leicht genetisch manipuliert werden und bieten ein unschätzbares Werkzeug, um Mechanismen der Aktivierung und Funktion in vitro und vor allem auch beim adoptiven Transfer in vivo zu sezieren.
Invariante natürliche Killer-T-Zellen (iNKT-Zellen) sind angeborene T-Lymphozyten, die einen semi-invarianten αβ-T-Zellrezeptor (TCR) exprimieren, der in Mäusen durch eine invariante Vα14-Jα18-Kette gebildet wird, gepaart mit einem begrenzten Satz verschiedener Vβ-Ketten1, die spezifisch für Lipidantigene ist, die durch das MHC-Klasse-I-verwandte Molekül CD1d2präsentiert werden. iNKT-Zellen durchlaufen ein Agonisten-Selektionsprogramm, das zum Erwerb eines aktivierten/angeborenen Effektor-Phänotyps bereits im Thymus führt, der durch mehrere Reifestufen3,4auftrittundeine CD4+ und eine CD4– Untergruppe produziert. Durch dieses Programm erwerben iNKT-Zellen unterschiedliche T-Helfer (TH)-Effektor-Phänotypen, nämlich TH1 (iNKT1), TH2(iNKT2) und TH17 (iNKT17), die durch die Expression der Transkriptionsfaktoren T-bet, GATA3, PLZF und RORγt identifizierbar sind5. iNKT-Zellen erkennen eine Reihe von mikrobiellen Lipiden, sind aber auch selbstreaktiv gegen endogene Lipide, die im Kontext pathologischer Situationen von Zellstress und Gewebeschäden wie Krebs und Autoimmunität hochreguliert werden2. Nach der Aktivierung modulieren iNKT-Zellen die Funktionen anderer angeborener und adaptiver Immuneffektorzellen durch direkten Kontakt und Zytokinproduktion2.
Die Untersuchungen von iNKT-Zellen wurden durch Mausmodelle, einschließlich CD1d-defizienter oder Jα18-defizienter Mäuse, und durch die Produktion von antigenbeladenen CD1d-Tetrameren sowie die Erzeugung von monoklonalen Antikörpern (mAbs) speziell für die menschliche semi-invariante TCR erleichtert. Die Erzeugung der primären Maus-iNKT-Zelllinie hat sich jedoch als schwierig erwiesen. Um die Antitumorfunktionen von iNKT-Zellen besser zu charakterisieren und für die adoptive Zelltherapie zu nutzen, haben wir ein Protokoll zur Reinigung und Erweiterung von Milz-iNKT-Zellen von iVα14-Jα18 transgenen Mäusen (iVα14Tg)6eingerichtet, bei denen iNKT-Zellen 30-mal häufiger vorkommen als bei Wildtyp-Mäusen.
Expandierte iNKT-Zellen können für In-vitro-Assays und in vivo bei der Rückübertragung in Mäuse genutzt werden. In diesem Setting haben wir zum Beispiel ihre potenten Anti-Tumor-Effekte gezeigt7. Darüber hinaus sind in vitro expandierte iNKT-Zellen für eine funktionelle Modifikation durch Gentransfer oder Editierung vor ihrer Injektion in vivo8zugänglich, was eine aufschlussreiche funktionelle Analyse molekularer Signalwege ermöglicht und den Weg für fortschrittliche Zelltherapien ebnet.
Hier zeigen wir ein reproduzierbares und praktikables Protokoll, um Millionen von gebrauchsfertigen iNKT-Zellen zu erhalten. Aufgrund des Mangels an diesen Zellen in vivo war eine Methode, um sie zu erweitern, dringend erforderlich. Das von uns vorgeschlagene Protokoll erfordert weder eine bestimmte Instrumentierung noch eine hohe Anzahl von Mäusen. Wir nutzten iVα14-Jα18 transgene Mäuse absichtlich, um die Anzahl der für das Verfahren benötigten Mäuse zu reduzieren.
Ein weiteres erfolg…
The authors have nothing to disclose.
Wir danken Paolo Dellabona und Giulia Casorati für die wissenschaftliche Unterstützung und kritische Lektüre des Manuskripts. Wir danken auch der NIH Tetramer Core Facility für Maus-CD1d-Tetramer. Die Studie wurde durch das Fondazione Cariplo Grant 2018-0366 (an M.F.) und das Stipendium der Italian Association for Cancer Research (AIRC) 2019-22604 (an G.D.) finanziert.
Ammonium-Chloride-Potassium (ACK) solution | in house | 0.15M NH4Cl, 10mM KHCO3, 0.1mM EDTA, pH 7.2-7.4 | |
anti-FITC Microbeads | Miltenyi Biotec | 130-048-701 | |
anti-PE Microbeads | Miltenyi Biotec | 130-048-801 | |
Brefeldin A | Sigma | B6542 | |
CD19 -FITC | Biolegend | 115506 | clone 6D5 |
CD1d-tetramer -PE | NIH tetramer core facility | mouse PBS57-Cd1d-tetramers | |
CD4 -PeCy7 | Biolegend | 100528 | clone RM4-5 |
Fc blocker | BD Bioscience | 553142 | |
Fetal Bovine Serum (FBS) | Euroclone | ECS0186L | heat-inactivated and filtered .22 before use |
FOXP3 Transcription factor staining buffer | eBioscience | 00-5523-00 | |
H2 (IAb) -FITC | Biolegend | 114406 | clone AF6-120.1 |
hrIL-2 | Chiron Corp | ||
Ionomycin | Sigma | I0634 | |
LD Columns | Miltenyi Biotec | 130-042-901 | |
LS Columns | Miltenyi Biotec | 130-042-401 | |
MACS buffer (MB) | in house | 0.5% Bovine Serum Albumin (BSA; Sigma-Aldrich) and 2Mm EDTA | |
MS Columns | Miltenyi Biotec | 130-042-201 | |
Non-essential amino acids | Gibco | 11140-035 | |
Penicillin and streptomycin (Pen-Strep) | Lonza | 15140-122 | |
PermWash | BD Bioscience | 51-2091KZ | |
PFA | Sigma | P6148 | |
Phosphate buffered saline (PBS) | EuroClone | ECB4004L | |
PMA | Sigma | P1585 | |
Pre-Separation Filters (30 µm) | Miltenyi Biotec | 130-041-407 | |
Recombinat Mouse IL-7 | R&D System | 407-ML-025 | |
RPMI 1640 with glutamax | Gibco | 61870-010 | |
sodium pyruvate | Gibco | 11360-039 | |
TCRβ -APC | Biolegend | 109212 | clone H57-597 |
αCD3CD28 mouse T activator Dynabeads | Gibco | 11452D | |
β-mercaptoethanol | Gibco | 31350010 |