Summary

金纳米粒子合成

Published: July 10, 2021
doi:

Summary

提出了在有机溶剂中合成直径约12纳米的金纳米粒子(Au纳米粒子)的协议。金纳米粒子用油胺脂蛋白封顶,以防止聚集。金纳米粒子可溶于甲苯等有机溶剂中。

Abstract

直径约12纳米的金纳米粒子(Au纳米粒子)通过在3.0克(3.7 mmol)中快速注入150毫克(0.15 mmol)的四氯酸溶液进行合成, 3.6 mL)的油胺(技术等级)和3.0 mL的甲苯在147 mL的甲苯中放入5.1克(6.4毫米醇,8.7毫升)的沸腾溶液中。在煮沸和混合反应溶液2小时时,反应混合物的颜色从透明变为浅黄色,变为浅粉色,然后慢慢变为深红色。然后关闭热量,并允许溶液逐渐冷却到室温1小时。然后,用离心机收集金纳米粒子并与溶液分离,洗三次:通过在10mL的甲苯部分旋转和分散金纳米粒子,然后通过加入40mL的甲醇部分并在离心机中旋转它们来沉淀金纳米粒子。然后,解决方案被拆除,以删除任何剩余的副产品和未经反应的起始材料。在真空环境中干燥金纳米粒子产生固体黑颗粒:可长期储存(最多一年)供以后使用,然后重新溶解在有机溶剂中,如甲苯。

Introduction

金纳米粒子是一种有趣而有用的纳米材料,是许多研究和应用的主题:如生物学1、医学2、纳米技术3和电子设备4。对金纳米粒子的科学研究可追溯到1857年,当时迈克尔·法拉第对金纳米粒子5的合成和特性进行了基础研究。合成金纳米粒子的两种主要”自下而上”技术是柠檬酸盐还原法6、7、8和有机双相合成法9、10。“Turkevich”柠檬酸盐还原法在直径在20纳米以下产生相当单分散的金纳米粒子,但直径在20纳米以上的金纳米粒子的多散率增加:而”布鲁斯特-希夫林”两相法使用硫/硫磺配体稳定生产直径达11纳米的金纳米粒子。使用这些方法预合成的金纳米粒子解决方案可在商业上获得。对于不需要大批量、高单分散度和大直径金纳米粒子的应用,从供应商那里购买和使用这些预合成的金纳米粒子可能就足够了。然而,储存在溶液中的金纳米粒子,如许多市售的纳米粒子,随着纳米粒子开始聚集并形成聚类,可能会随着时间的推移而降解。或者,对于大型应用,需要频繁或长期使用金纳米粒子的长期项目,或对金纳米粒子的单一性和尺寸有更严格的要求的项目,最好自己进行金纳米粒子合成。通过执行金纳米粒子合成过程,我们有机会控制各种合成参数,如所生产的金纳米粒子的数量、金纳米粒子的直径、金纳米粒子的单分性以及用作封盖配体的分子。此外,这种金纳米粒子可以作为固体颗粒储存在干燥的环境中,有助于保存金纳米粒子,以便它们可以在以后的时间,长达一年后,在质量上降解最小。此外,通过大量制造金纳米粒子,然后将其储存在干燥状态,使其持续更长时间,也有可能节省成本和减少浪费。总的来说,合成金纳米粒子本身提供了令人信服的优势,可能不可行与市售的金纳米粒子。

为了实现金纳米粒子合成的诸多优势,本文提出了金纳米粒子合成工艺。所描述的金纳米粒子合成过程是由平松和奥斯特洛12开发的过程的修改版本。黄金纳米粒子通常使用这种合成过程合成,直径约12纳米。用于执行金纳米粒子合成过程的主要化学试剂是四氯酸(HAuCl4)、油胺和甲苯。氮手套箱用于为金纳米粒子合成过程提供惰性干燥环境,因为四氯酸对水/湿度敏感。金纳米粒子用油胺脂蛋白分子封装,以防止金纳米粒子在溶液中聚集。在合成过程结束时,金纳米粒子在真空环境中干燥,以便它们可以储存和保存在干燥状态下供以后使用,最晚一年后使用。当金纳米粒子准备使用时,它们可以再注入溶液中的有机溶剂,如甲苯。

Protocol

化学量:注:为了获得纳米粒子合成的适当化学量,请将”纳米粒子合成”表(Osterloh 研究第12条支持信息的第 2 页)上的初始量乘以 3,并稍作修改。 表1 显示了注射液、沸腾溶液、洗涤/净化溶液和金等溶液所需的化学量。 金纳米粒子合成过程的清洁和准备(第1天)注:以下步骤可在合成过程的第一天完成。 <p…

Representative Results

图1显示金纳米粒子合成化学反应混合物溶液(四氯酸、油胺和甲苯)在反应容器中最初沸腾时,应在几分钟内逐渐改变颜色:从透明到浅黄色(左图),到浅粉色(中心图像),到浅红色(右图)。溶液颜色的变化表明,随着金纳米粒子开始核化并随着时间的推移而变大,其大小也在不断变化。一般来说,随着金纳米粒子的核化和生长,金纳米粒子溶液应随着时间的推移变…

Discussion

执行上述的金纳米粒子合成协议应产生直径约 12 nm 且单极性相当高(± 2 nm)的金纳米粒子。然而,有一些关键的步骤和过程参数,可以调整,以潜在地改变金纳米粒子的大小/直径和单分散/多散。例如,将前体溶液注入反应容器并允许四氯酸、油胺和甲苯溶液煮沸两小时后,可以选择立即淬火反应溶液或延迟淬火和自然冷却。如果需要立即淬火,在2小时加热反应步骤完成后,在反应容器中加入10…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者要感谢弗兰克·奥斯特洛对纳米粒子合成方法的帮助。作者希望感谢国家科学基金会(1807555和203665)和半导体研究公司(2836)的财政支持。

Materials

50 mL Conical Centrifuge Tubes with Plastic Caps (Quantity: 12) Ted Pella, Inc. 12942 used for cleaning/storing gold nanoparticle solution/precipitate (it's best to use 12 tubes, to allow the gold nanoparticles from the synthesis process to last up to one year (e.g., 1 tube per month))
Acetone Sigma-Aldrich 270725-2L solvent for cleaning glassware/tubes
Acid Wet Bench N/A N/A for cleaning chemical reaction glassware/supplies with gold etchant solution (part of wet chemical lab facilities)
Aluminum Foil Reynolds B08K3S7NG1 for covering glassware after cleaning it to keep it clean
Burette Clamps Fisher Scientific 05-769-20 for holding the condenser tube and reaction vessel during the synthesis process (located in the nitrogen glove box)
Centrifuge (with 50 mL Conical Centrifuge Tube Rotor/Adapter) ELMI CM-7S for spinning the gold nanoparticles in solution and precipitating/collecting them at the bottom of the 50 mL conical centrifuge tubes
DI Water Millipore Milli-Q Direct deionized water
Fume Hood N/A N/A for cleaning laboratory glassware and supplies with solvents (part of wet chemical lab facilities)
Glass Beaker (600 mL) Ted Pella, Inc. 17327 for holding reaction vessel, condenser tube, glass pipette, and magnetic stir bar during cleaning with gold etchant and then with water
Glass Beakers (400 mL) (Quantity: 2) Ted Pella, Inc. 17309 for measuring toluene and gold etchant
Glass Graduated Cylinder (5 mL) Fisher Scientific 08-550A for measuring toluene and oleylamine for injection
Glass Graduated Pipette (10 mL) Fisher Scientific 13-690-126 used with the rubber bulb with valves to inject the gold nanoparticle precursor solution into the reaction vessel
Gold Etchant TFA Sigma-Aldrich 651818-500ML (with potassium iodide) for cleaning reaction vessel, condenser tube, magnetic stir bar, glass pipette [alternatively, use Aqua Regia]
Isopropanol Sigma-Aldrich 34863-2L solvent for cleaning glassware/tubes
Liebig Condenser Tube (~500 mm) (24/40) Fisher Scientific 07-721C condenser tube, attaches to glass reaction vessel
Magnetic Stirring Bar Fisher Scientific 14-513-51 for stirring reaction solution during the synthesis process
Methanol (≥99.9%) Sigma-Aldrich 34860-2L-R new, ≥99.9% purity (for washing gold nanoparticles after synthesis)
Microbalance (mg resolution) Accuris Instruments W3200-120 for weighing tetrachloroauric acid powder (located in the nitrogen glove box)
Micropipette (1000 µL) Fisher Scientific FBE01000 for measuring and dispensing liquid chemicals such as oleylamine and toluene (if using micropipette instead of graduated cylinder for measurement)
Micropipette Tips (1000 µL) USA Scientific 1111-2831 for measuring and dispensing liquid chemicals such as oleylamine and toluene (if using micropipette instead of graduated cylinder for measurement)
Nitrile Gloves Ted Pella, Inc. 81853 personal protective equipment (PPE), for protection, and for keeping nitrogren glove box gloves clean
Nitrogen Glove Box M. Braun LABstar pro for performing gold nanoparticle synthesis in a dry and inert environment
Non-Aqueous 20 mL Glass Vials with PTFE-Lined Caps (Quantity: 2) Fisher Scientific 03-375-25 for weighing tetrachloroauric acid powder and mixing with oleylamine and toluene to make injection solution
Oleylamine (Technical Grade, 70%) Sigma-Aldrich O7805-100G technical grade, 70%, preferably new, stored in the nitrogen glove box
Parafilm M Sealing Film (2 in. x 250 ft) Sigma-Aldrich P7543 for sealing the gold nanoparticles in the 50 mL centrifuge tubes after the synthesis process is over
Round Bottom Flask (250 mL) (24/40) Wilmad-LabGlass LG-7291-234 glass reaction vessel, attaches to condenser tube
Rubber Bulb with Valves (Rubber Bulb-Type Safety Pipet Filler) Fisher Scientific 13-681-50 used with the long graduated glass pipette to inject the gold nanoparticle precursor solution into the reaction vessel
Rubber Hoses (PVC Tubes) (Quantity: 2) Fisher Scientific 14-169-7D for connecting the condenser tube to water inlet/outlet ports
Stainless Steel Spatula Ted Pella, Inc. 13590-1 for scooping tetrachloroauric acid powder from small container
Stand (Base with Rod) Fisher Scientific 12-000-102 for holding the condenser tube and reaction vessel during the synthesis process (located in the nitrogen glove box)
Stirring Heating Mantle (250 mL) Fisher Scientific NC1089133 for holding and supporting reaction vessel sphere, while heating with magnetic stirrer rotating the magnetic stirrer bar
Tetrachloroauric(III) Acid (HAuCl4) (≥99.9%) Sigma-Aldrich 520918-1G preferably new or never opened, ≥99.9% purity, stored in fridge, then opened only in the nitrogen glove box, never exposed to air/water/humidity
Texwipes / Kimwipes / Cleanroom Wipes Texwipe TX8939 for miscellaneous cleaning and surface protection
Toluene (≥99.8%) Sigma-Aldrich 244511-2L new, anhydrous, ≥99.8% purity
Tweezers Ted Pella, Inc. 5371-7TI for poking small holes in aluminum foil, and for removing Parafilm
Vortexer Cole-Parmer EW-04750-51 for vortexing the gold nanoparticles in toluene in 50 mL conical centrifuge tubes to resuspend the gold nanoparticles into the toluene solution

Referenzen

  1. Sperling, R. A., Gil, P. R., Zhang, F., Zanella, M., Parak, W. J. Biological applications of gold nanoparticles. Chemical Society Reviews. 37 (9), 1896-1908 (2008).
  2. Dreaden, E. C., Alkilany, A. M., Huang, X., Murphy, C. J., El-Sayed, M. A. The golden age: Gold nanoparticles for biomedicine. Chemical Society Reviews. 41 (7), 2740-2779 (2012).
  3. Daniel, M. -. C., Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chemical Reviews. 104 (1), 293-346 (2004).
  4. McCold, C. E., et al. Ligand exchange based molecular doping in 2D hybrid molecule-nanoparticle arrays: length determines exchange efficiency and conductance. Molecular Systems Design & Engineering. 2 (4), 440-448 (2017).
  5. Faraday, M. Experimental Relations of Gold (and other Metals) to Light. Philosophical Transactions of the Royal Society of London. 147, 145-181 (1857).
  6. Turkevich, J., Stevenson, P. C., Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discussions of the Faraday Society. 11, 55-75 (1951).
  7. Frens, G. Controlled Nucleation for the Regulation of the Particle Size in Monodisperse Gold Suspensions. Nature Physical Science. 241 (105), 20-22 (1973).
  8. Kimling, J., Maier, M., Okenve, B., Kotaidis, V., Ballot, H., Plech, A. Turkevich method for gold nanoparticle synthesis revisited. Journal of Physical Chemistry B. 110 (32), 15700-15707 (2006).
  9. Wilcoxon, J. P., Williamson, R. L., Baughman, R. Optical properties of gold colloids formed in inverse micelles. The Journal of Chemical Physics. 98 (12), 9933-9950 (1993).
  10. Brust, M., Walker, M., Bethell, D., Schiffrin, D. J., Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid-liquid system. Journal of the Chemical Society, Chemical Communications. (7), 801-802 (1994).
  11. Zhao, P., Li, N., Astruc, D. State of the art in gold nanoparticle synthesis. Coordination Chemistry Reviews. 257 (3-4), 638-665 (2013).
  12. Hiramatsu, H., Osterloh, F. E. A Simple Large-Scale Synthesis of Nearly Monodisperse Gold and Silver Nanoparticles with Adjustable Sizes and with Exchangeable Surfactants. Chemistry of Materials. 16 (13), 2509-2511 (2004).
  13. Voorhees, P. W. The Theory of Ostwald Ripening. Journal of Statistical Physics. 38 (1-2), 231-252 (1985).
  14. Lifshitz, I. M., Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. Journal of Physics and Chemistry of Solids. 19 (1-2), 35-50 (1961).
  15. Haiss, W., Thanh, N. T. K., Aveyard, J., Fernig, D. G. Determination of Size and Concentration of Gold Nanoparticles from UV-Vis Spectra. Analytical Chemistry. 79 (11), 4215-4221 (2007).
  16. McCold, C. E., Fu, Q., Howe, J. Y., Hihath, J. Conductance based characterization of structure and hopping site density in 2D molecule-nanoparticle arrays. Nanoscale. 7 (36), 14937-14945 (2015).
  17. Hihath, S., McCold, C., March, K., Hihath, J. L. Characterization of Ligand Exchange in 2D Hybrid Molecule-nanoparticle Superlattices. Microscopy and Microanalysis. 24 (1), 1722-1723 (2018).
  18. McCold, C. E., et al. Molecular Control of Charge Carrier and Seebeck Coefficient in Hybrid Two-Dimensional Nanoparticle Superlattices. The Journal of Physical Chemistry C. 124 (1), 17-24 (2020).

Play Video

Diesen Artikel zitieren
Marrs, J., Ghomian, T., Domulevicz, L., McCold, C., Hihath, J. Gold Nanoparticle Synthesis. J. Vis. Exp. (173), e62176, doi:10.3791/62176 (2021).

View Video