Qui descriviamo, confrontiamo e confrontiamo due diverse tecniche per un accurato conteggio follicolo dei tessuti ovarico del topo fissi.
Mammiferi femminili che si riproducono sessualmente nascono con tutta la loro fornitura di ovociti per tutta la vita. Gli ovociti immaturi e quiescenti si trovano all’interno dei follicoli primordiali, l’unità di stoccaggio della linea germinale femminile. Non sono rinnovabili, quindi il loro numero alla nascita e il conseguente tasso di perdita dettano in gran parte la durata fertile della vita femminile. Una quantificazione accurata del numero primordiale di follicoli nelle donne e negli animali è essenziale per determinare l’impatto di medicinali e sostanze tossiche sulla riserva ovarica. È anche necessario valutare la necessità e il successo delle tecniche di conservazione della fertilità esistenti ed emergenti. Attualmente, non esistono metodi per misurare con precisione il numero di follicoli primordiali che comprendono la riserva ovarica nelle donne. Inoltre, ottenere tessuto ovarico da grandi animali o specie in via di estinzione per la sperimentazione spesso non è fattibile. Pertanto, i topi sono diventati un modello essenziale per tali studi e la capacità di valutare i numeri primordiali dei follicoli nelle ovaie del topo intero è uno strumento critico. Tuttavia, i rapporti sui numeri assoluti dei follicoli nelle ovaie di topo in letteratura sono altamente variabili, rendendo difficile confrontare e / o replicare i dati. Ciò è dovuto a una serie di fattori tra cui tensione, età, gruppi di trattamento, nonché differenze tecniche nei metodi di conteggio impiegati. In questo articolo, forniamo una guida didattica passo-passo per preparare sezioni istologiche e contare follicoli primordiali nelle ovaie di topo usando due metodi diversi: [1] stereologia, che si basa sulla tecnica del frazionamento / dissector ottico; e [2] la tecnica del conteggio diretto. Alcuni dei principali vantaggi e svantaggi di ciascun metodo saranno evidenziati in modo da migliorare la riproducibilità sul campo e consentire ai ricercatori di selezionare il metodo più appropriato per i loro studi.
Gli ovociti immaturi, arrestati meioticamente immagazzinati all’interno di follicoli primordiali nell’ovaio sono l’unità di stoccaggio della linea germinale femminile e comprendono la riserva ovarica a vita di un individuo. Il numero primordiale di follicoli diminuisce naturalmentecon l’età di 1, o in alternativa, può essere prematuramente impoverito a seguito dell’esposizione a sostanze chimiche esogene, tra cui alcuni prodotti farmaceutici e sostanze tossiche ambientali nell’aria, negli alimenti enell’acqua 2. Dato che il numero primordiale del follicolo è finito, la quantità e la qualità dei follicoli presenti all’interno dell’ovaio determinano in gran parte la fertilità femminile e la salute della prole. Pertanto, una quantificazione accurata del numero primordiale di follicoli nelle donne è essenziale per valutare gli impatti fuori bersaglio degli insulti esogeni sulla riserva ovarica.
Nelle donne, l’analisi dell’intera ovaia non è generalmente possibile, quindi le misure surrogate non invasive della riserva ovarica devono essere utilizzate in un ambiente clinico. L’Mϋllerian anti-Mϋllerian (AMH) è il biomarcatore surrogato più utilizzato clinicamente3. I livelli di AMH sierico sono spesso misurati nelle donne in età materna avanzata, o prima e dopo il trattamento del cancro, come la chemioterapia. Tuttavia, l’AMH è prodotto dalla crescita dei follicoli e non dai follicoli primordiali, e quindi, i livelli del siero non informano sul numero primordiale assoluto del follicolo.
Con l’assenza di metodi per determinare con precisione il numero primordiale di follicoli nelle donne in situ, il conteggio dei follicoli ovarico in piccoli modelli animali, come i roditori, rimane uno strumento di ricerca essenziale per valutare il grado in cui gli insulti esogeni hanno un impatto sui follicoli primordiali e quindi sulla fertilità. Sfortunatamente, tuttavia, i rapporti in tutta la letteratura sui numeri primordiali dei follicoli nei modelli di roditori sono altamentevariabili 4. Una delle ragioni principali di ciò sono le differenze tecniche ampiamente riportate nel metodo di conteggio utilizzato. Prevalentemente, ci sono due diverse tecniche descritte nella letteratura per enumerare i follicoli primordiali nei topi. Questi includono la stereologia, che utilizza il metodo del dissector ottico del frazionatore, e il conteggio diretto dei follicoli.
La stereologia è ampiamente considerata il gold standard in quanto utilizza un campionamento casuale uniformesistematico 5, rendendolo il metodo più accurato per quantificare il numero primordiale del follicolo nell’intero topo, o ovaiedi ratto 4,6,7. La stereologia è imparziale, in quanto spiega la struttura tridimensionale dell’oggetto di interesse8. Utilizzando un metodo di dissector/frazionatore ottico, vengono applicati tre livelli di campionamento per quantificare i follicoli primordiali utilizzando sezioni di tessuto spesse (ad esempio, 20 μm) all’interno di una frazione nota dell’ovaio totale del topo. In primo luogo, l’intervallo di campionamento viene scelto (ad esempio, ogni 3rd section) ad un inizio casuale (frazione di campionamento 1, f1)4. Le sezioni vengono quindi campionare in modo sistematico e uniforme da questo punto attraverso l’intera ovaia. Quindi, un sistema di conteggio imparziale viene sovrapposto alla sezione ovarica e progressivamente spostato lungo una griglia di conteggio definita e randomizzata (frazione di campionamento 2, f2)8. Infine, una frazione nota dello spessore della sezione viene campionato otticamente (ad esempio, 10 μm) e vengono conteggiati i follicoli all’interno di quest’area (frazione di campionamento 3, f3)4. Il numero del follicolo grezzo viene moltiplicato per l’inverso di queste frazioni di campionamento per ottenere il valore finale. Questo metodo richiede una formazione e attrezzature esperte, incluso un microscopio con uno stadio motorizzato guidato da software stereologico. I tessuti devono essere conservati in un fixativo di Bouin specializzato e incorporati nella resina glicolemetacrilato per consentire il taglio di sezioni di tessuto spesse utilizzando un microtomo di resina glicolemetacrilato con un coltello di vetro. Questo metodo è progettato per tenere conto del restringimento e della deformazione tissutale, per preservare al meglio la struttura morfologica tridimensionale dell’ovaio e dei follicoli9.
Il conteggio diretto dei follicoli è il metodo più utilizzato per contare ifollicoli 10. Possono essere utilizzati fissivi più comuni (cioè formalina), seguiti da incorporamento di cera di paraffina e sessatura seriale esaustiva utilizzando un microtomo standard con uno spessore compreso tra 4-6 μm. I follicoli vengono sistematicamente conteggiati nell’intera sezione tissutale ad un intervallo definito, e quindi moltiplicati per l’inverso dell’intervallo di campionamento per ottenere la stima totale del follicolo. Questo metodo è rapido, facile, può essere eseguito utilizzando tessuti archiviati e preparato utilizzando tecniche istologiche standard. Richiede solo un microscopio a luce con funzionalità di imaging standard. Tuttavia, nonostante questi vantaggi, il conteggio diretto dei follicoli manca dell’accuratezza e dei rigorosi parametri di conteggio della stereologia, rendendolo più incline ai pregiudizi degli investigatori. Inoltre, i tessuti possono subire restringimento e deformazione durante la lavorazione, interrompendo l’integrità e la morfologia dell’ovaio e rendendo così difficile la classificazione e la quantificazione dei follicoli.
Lo scopo di questo articolo è quello di descrivere due metodi comunemente usati per valutare quantitativamente il numero primordiale di follicoli nelle ovaie del topo: stereologia e conteggio diretto dei follicoli. Forniremo protocolli dettagliati per questi due metodi ed evidenzieremo alcuni dei loro punti di forza e di debolezza, al fine di migliorare la riproducibilità nel nostro campo e consentire ai ricercatori di prendere una decisione informata sul metodo di conteggio più appropriato per i loro studi.
Questo articolo fornisce un protocollo passo-passo per la tecnica gold standard per l’enumerazione dei follicoli primordiali del topo, la stereologia e il metodo più comunemente utilizzato per il conteggio diretto dei follicoli. Il trattamento chemioterapico è stato utilizzato per confrontare e confrontare i risultati ottenuti da questi due diversi metodi all’interno dell’ovaio sinistro e destro dello stesso animale. Entrambi i metodi hanno rivelato un’elevata variabilità tra gli animali nei numeri primordiali del fol…
The authors have nothing to disclose.
Questo lavoro è stato reso possibile attraverso il supporto alle infrastrutture operative del governo statale vittoriano e l’AUSTRALIAN Government NHMRC IRIISS e supportato dai finanziamenti del National Health and Medical Research Council (ALW #1120300) e dell’Australian Research Council (KJH #FT190100265). Gli autori vorrebbero riconoscere il supporto tecnico della Monash Animal Research Platform, monash Histology Platform e Monash Micro Imaging facility.
1-Butanol (HPLC) | Fisher Chemical | #A383-1 | |
Acid alcohol | Amber Scientific | #ACDL | |
Bouin’s fixative | Sigma-Aldrich | #HT10132 | Picric acid 0.9% (w/v), formaldehyde 9% (v/v), acetic acid 5% (w/v) |
Cyclophosphamide | Sigma-Aldrich | #C0768-5G | |
Dibutylphthalate Polystyrene Xylene (DPX) | Sigma-Aldrich | #06522 | |
Ethanol | Amber Scientific | #ETH | Ethanol 100% |
Micro Feather opthalmic scalpel with aluminium handle | Designs for Vision | #FEA-745-SR | Feather blade for dissections (seen in Figure 1) |
Formalin fixative | Australian Biostain | #ANBFC | |
Glass coverslip | Thermo Scientific | #MENCS22501GP | 22 mm x 50 mm |
Glycomethacrylate resin RM2165 microtome | Leica Microsystems | #RM2165 | |
Glycolmethacrylate DPX | *made in house | *Mix 1.5 L Xylene; 800 g polystyrene pellets; 100mL Dibutyl phthalate for 3 weeks | |
Histolene | Trajan | #11031 | |
Mayer’s haematoxylin | Amber Scientific | #MH | |
Olympus BX50 microscope | Olympus | #BX50 | Brightfield microscope fitted with 10x dry & 100x oil immersion objective (numerical aperture 1.3) |
Olympus immersion oil type-F | Olympus | #IMMOIL-F30CC | |
Olympus TH4-200 light source | Olympus | #TH4-200 | |
Paraffin wax | Sigma-Aldrich | #03987 | |
Periodic acid | Trajan | #PERI1% | Periodic acid 1% |
Rotary Microtome CUT 4060 | MicroTec | #4060R/F | Used to cut paraffin sections |
Schiff’s reagent | Trajan | #SCHF | |
Scott's tap water | Amber Scientific | #SCOT | Potassium carbonate, magnesium sulphate, water |
StereoInvestigator Stereological System | MBF Bioscience | Includes StereoInvestigator software, multi-control unit, automatic stage and joystick | |
Superfrost microscope slides | Thermo Scientific | #MENSF41296SP | 1 mm, 72 pcs |
Technovit 7100 Plastic embedding system | Emgrid Australia | #64709003 | 500 mL/5 x 1 g/40 mL |
Technovit 3040 yellow | Emgrid Australia | #64708805 | 100 g/80 mL |