Summary

可视化与钙西通宁基因相关的肽免疫活性内活性与免疫发光和神经追踪

Published: January 06, 2021
doi:

Summary

在这里,我们提出了一个协议,可视化钙素基因相关肽(CGRP)免疫活性神经纤维和血管的空间相关性,分别使用CGRP和phalloidin的免疫荧光和荧光组织化学。此外,这些神经纤维的起源是逆行跟踪荧光神经示踪剂。

Abstract

本研究的目的是利用免疫荧光、三维(3D)重建和逆行追踪技术,研究钙化物基因相关肽(CGRP)免疫感官神经纤维的分布和起源。在这里,神经纤维和血管分别使用CGRP和荧光法洛丁的免疫荧光和组织化学技术进行染色。3D重建证明了杜拉尔CGRP-免疫神经纤维和血管的空间相关性。同时,通过神经追踪技术从颅内杜拉母体中脑膜动脉(MMA)周围区域到三叉神经结节(TG)和颈椎(C)多头根神经痛(DRG)的神经追踪技术检测出CGRP免疫活性神经纤维的起源。此外,还使用双免疫荧光与CGRP一起检查了TG和DPG中FG标记神经元的化学特性。利用透明的全安装样本和3D重建,结果表明,CGRP免疫活性神经纤维和巴洛丁标记动脉一起运行或单独形成一个神经血管网络在3D视图, 而FG标记的神经元被发现在TG的眼科、最大侧和支线分支,以及C2-3 DRG ipsilateral到示踪器应用的一侧,其中一些FG标记的神经元呈现CGRP免疫活性表达。通过这些方法,我们演示了颅内杜拉母体血管周围CGRP免疫活性神经纤维的分布特征,以及TG和DPG这些神经纤维的来源。从方法论的角度看,它为理解颅骨在生理或病理条件下复杂的神经血管结构提供了宝贵的参考。

Introduction

颅骨母体是保护大脑的最外层,含有丰富的血管和不同种类的神经纤维1,2。许多研究表明,敏感颅杜拉母体可能是导致头痛发生的关键因素,涉及异常血管扩张和内向3,4,5。因此,颅内神经血管结构知识对于理解头痛的发病机理,特别是偏头痛的发病机理非常重要。

虽然杜拉内在研究以前与传统的免疫化学,神经纤维和血管的空间相关性在颅杜拉母体较少研究6,7,8,9。为了更详细地揭示杜拉神经血管结构,钙素基因相关肽(CGRP)和巴洛丁被选为分别用免疫荧光和荧光组织化学10染色全山颅骨神经纤维和血管的标记物。这可能是获得神经血管结构的三维(3D)视图的最佳选择。此外,氟金(FG)被应用于颅内杜拉母体中脑膜动脉(MMA)周围区域,以确定CGRP免疫活性神经纤维的来源, 并追溯到三角结节 (TG) 和颈椎 (C) 多面根神经质 (DRGs), 而 FG 标记的神经元使用免疫荧光与 CGRP 一起进一步检查。

这项研究的目的是为研究颅内杜拉母体的神经血管结构提供一个有效的工具,用于CGRP免疫活性内分和其起源。通过利用透明的全山杜拉母校,结合免疫荧光、逆行追踪、共焦技术和3D重建,我们期望呈现颅杜拉母校神经血管结构的新3D视图。这些方法方法可以进一步用于探索不同头痛的发病机理。

Protocol

本研究经中国医学科学院针灸与莫西布西翁研究所伦理委员会批准(参考号D2018-09-29-1)。所有程序均按照《国家实验室动物护理和使用卫生指南》(1996年.C,华盛顿特区国家学院出版社)执行。这项研究使用了12只成年斯普拉格-道利雄性大鼠(体重220±20克)。动物[许可证号SCXK(JING) 2017-0005]由国家食品和药物管制研究所提供。 1. 大鼠颅杜拉母体的内向 香水</…

Representative Results

颅体母体的神经血管结构在免疫荧光和荧光组织染色与CGRP和phalloidin后,CGRP免疫活性神经纤维和法洛丁标记的杜拉尔动脉和结缔组织在3D模式(图2C,D,E,F)的全山颅骨母体中清晰地表现出来。结果表明,厚和薄的CGRP免疫活性神经纤维与神经动脉平行运行,在血管壁周围,或血管之间(图2D,E,F?…

Discussion

在这项研究中,我们成功地演示了CGRP免疫活性神经纤维在颅尿母体中的分布和起源,使用CGRP抗体和FG神经示踪剂的免疫荧光、3D重建和神经追踪方法,为更好地了解神经血管网络提供了组织学和化学证据。

众所周知,CGRP在偏头痛4、17的发病机因中起着至关重要的作用。结果表明,增加CGRP可导致血管扩张和神经原性炎症,导致沿三?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

本研究由中国国家重点研发项目(项目代码2019YFC1709103;2018YFC1707804号)和中国国家自然科学基金(项目代码81774211;第81774432号项目代码,第81801561号)支持。

Materials

Alexa Fluor 488 donkey anti-mouse IgG (H+L) Invitrogen by Thermo Fisher Scientific A21202 Protect from light; RRID: AB_141607
Brain stereotaxis instrument Narishige SR-50
CellSens Dimension Olympus Version 1.1 Software of fluorescent microscope
Confocal imaging system Olympus FV1200
Fluorogold (FG) Fluorochrome 52-9400 Protect from light
Fluorescent imaging system Olympus BX53
Freezing microtome Thermo Microm International GmbH
Olympus FV10-ASW 4.2a Olympus Version 4.2 Confocal image processing software system
Micro Drill Saeyang Microtech Marathon-N7
Mouse anti-CGRP Abcam ab81887 RRID: AB_1658411
Normal donkey serum Jackson ImmunoResearch 017-000-121
Phalloidin 568 Molecular Probes A12380 Protect from light
Photoshop and  Illustration Adobe CS6 Photo editing software
Rabbit anti- Fluorogold Abcam ab153 RRID: AB_90738
Sprague Dawley National Institutes for Food and Drug Control SCXK (JING) 2014-0013
Superfrost plus microscope slides Thermo #4951PLUS-001 25x75x1mm

Referenzen

  1. Kekere, V., Alsayouri, K. Anatomy, Head and Neck, Dura Mater. StatPearls. , (2020).
  2. Shimizu, T., et al. Distribution and origin of TRPV1 receptor-containing nerve fibers in the dura mater of rat. Brain Research. 1173, 84-91 (2007).
  3. Jacobs, B., Dussor, G. Neurovascular contributions to migraine: moving beyond vasodilation. Neurowissenschaften. 338, 130-144 (2016).
  4. Dodick, D. W. A phase-by-phase review of migraine pathophysiology. Headache. 58, 4-16 (2018).
  5. Amin, F. M., et al. Investigation of the pathophysiological mechanisms of migraine attacks induced by pituitary adenylate cyclase-activating polypeptide-38. Brain: A Journal of Neurology. 137, 779-794 (2014).
  6. Keller, J. T., Marfurt, C. F. Peptidergic and serotoninergic innervation of the rat dura mater. The Journal of Comparative Neurology. 309 (4), 515-534 (1991).
  7. Messlinger, K., Hanesch, U., Baumgärtel, M., Trost, B., Schmidt, R. F. Innervation of the dura mater encephali of cat and rat: ultrastructure and calcitonin gene-related peptide-like and substance P-like immunoreactivity. Anatomy and Embryology. 188 (3), 219-237 (1993).
  8. Lennerz, J. K., et al. Calcitonin receptor-like receptor (CLR), receptor activity-modifying protein 1 (RAMP1), and calcitonin gene-related peptide (CGRP) immunoreactivity in the rat trigeminovascular system: differences between peripheral and central CGRP receptor distribution. The Journal of Comparative Neurology. 507 (3), 1277-1299 (2008).
  9. Eftekhari, S., Warfvinge, K., Blixt, F. W., Edvinsson, L. Differentiation of nerve fibers storing CGRP and CGRP receptors in the peripheral trigeminovascular system. The Journal of Pain: Official Journal of the American Pain Society. 14 (11), 1289-1303 (2013).
  10. Xu, D. S., et al. Characteristics of distribution of blood vessels and nerve fibers in the skin tissues of acupoint “Taichong” (LR3) in the rat. Zhen Ci Yan Jiu. 41 (6), 486-491 (2016).
  11. Cui, J. J., et al. The expression of calcitonin gene-related peptide on the neurons associated Zusanli (ST 36) in rats. Chinese Journal of Integrative Medicine. 21 (8), 630-634 (2015).
  12. Andres, K. H., von Düring, M., Muszynski, K., Schmidt, R. F. Nerve fibres and their terminals of the dura mater encephali of the rat. Anatomy and Embryology. 175 (3), 289-301 (1987).
  13. Leng, C., Chen, L., Li, C. Alteration of P2X1-6 receptor expression in retrograde Fluorogold-labeled DRG neurons from rat chronic neuropathic pain model. Biomedical Reports. 10 (4), 225-230 (2019).
  14. Huang, T. L., et al. Factors influencing the retrograde labeling of retinal ganglion cells with fluorogold in an animal optic nerve crush model. Ophthalmic Research. 51 (4), 173-178 (2014).
  15. Huang, T. L., Chang, C. H., Lin, K. H., Sheu, M. M., Tsai, R. K. Lack of protective effect of local administration of triamcinolone or systemic treatment with methylprednisolone against damages caused by optic nerve crush in rats. Experimental Eye Research. 92 (2), 112-119 (2011).
  16. Tsai, R. K., Chang, C. H., Wang, H. Z. Neuroprotective effects of recombinant human granulocyte colony-stimulating factor (G-CSF) in neurodegeneration after optic nerve crush in rats. Experimental Eye Research. 87 (3), 242-250 (2008).
  17. Iyengar, S., Ossipov, M. H., Johnson, K. W. The role of calcitonin gene-related peptide in peripheral and central pain mechanisms including migraine. Pain. 158 (4), 543-559 (2017).
  18. Russell, F. A., King, R., Smillie, S. J., Kodji, X., Brain, S. D. Calcitonin gene-related peptide: physiology and pathophysiology. Physiological Reviews. 94 (4), 1099-1142 (2014).
  19. Kou, Z. Z., et al. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats. Frontiers in neural circuits. 8, 6 (2014).
  20. Alarcon-Martinez, L., et al. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection. eLife. 7, 34861 (2018).
  21. Wang, J., et al. A new approach for examining the neurovascular structure with phalloidin and calcitonin gene-related peptide in the rat cranial dura mater. Journal of Molecular Histology. 51 (5), 541-548 (2020).
  22. Liu, Y., Broman, J., Edvinsson, L. Central projections of sensory innervation of the rat superior sagittal sinus. Neurowissenschaften. 129, 431-437 (2004).
  23. Liu, Y., Broman, J., Edvinsson, L. Central projections of the sensory innervation of the rat middle meningeal artery. Brain Research. 1208, 103-110 (2008).
  24. Schmued, L. C., Fallon, J. H. Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Research. 377 (1), 147-154 (1986).

Play Video

Diesen Artikel zitieren
Wang, J., Xu, D., Cui, J., She, C., Wang, H., Wu, S., Zou, L., Zhang, J., Bai, W. Visualizing the Calcitonin Gene-Related Peptide Immunoreactive Innervation of the Rat Cranial Dura Mater with Immunofluorescence and Neural Tracing. J. Vis. Exp. (167), e61742, doi:10.3791/61742 (2021).

View Video