Um protocolo é descrito para utilizar o dióxido de carbono no gás de usina de gás natural para cultivar microalgas em lagoas abertas de pista. A injeção de gás de flue é controlada com um sensor de pH, e o crescimento das microalgas é monitorado com medições em tempo real da densidade óptica.
Nos Estados Unidos, 35% das emissões totais de dióxido de carbono (CO2) vêm da indústria de energia elétrica, das quais 30% representam a geração de eletricidade a gás natural. As microalgas podem biofixar CO2 10 a 15 vezes mais rápido que as plantas e converter biomassa de algas em produtos de interesse, como biocombustíveis. Assim, este estudo apresenta um protocolo que demonstra as sinergias potenciais do cultivo de microalgas com uma usina de gás natural situada no sudoeste dos Estados Unidos em um clima semiárido quente. Tecnologias de última geração são usadas para melhorar a captura e utilização de carbono através da espécie de algas verdes Chlorella sorokiniana, que pode ser processada ainda mais em biocombustível. Descrevemos um protocolo envolvendo uma lagoa de pista aberta semi-automatizada e discutimos os resultados de seu desempenho quando foi testado na usina de Energia Elétrica Tucson, em Tucson, Arizona. O gás de flua foi usado como a principal fonte de carbono para controlar o pH, e Chlorella sorokiniana foi cultivada. Um meio otimizado foi usado para cultivar as algas. A quantidade de CO2 adicionada ao sistema em função do tempo foi monitorada de perto. Além disso, outros fatores físico-químicos que afetam a taxa de crescimento de algas, a produtividade da biomassa e a fixação de carbono foram monitorados, incluindo densidade óptica, oxigênio dissolvido (DO), eletrocondutividade (CE) e temperaturas de ar e lagoa. Os resultados indicam que um rendimento de microalgas de até 0,385 g/L de peso seco sem cinzas é alcançável, com um teor lipídetivo de 24%. Aproveitar as oportunidades sinérgicas entre emissores de CO2 e agricultores de algas pode fornecer os recursos necessários para aumentar a captura de carbono, ao mesmo tempo em que apoia a produção sustentável de biocombustíveis e bioprodutos de algas.
O aquecimento global é uma das questões ambientais mais importantes que o mundo enfrenta hoje1. Estudos sugerem que a principal causa é o aumento das emissões de gases de efeito estufa (GEE), principalmente CO2, na atmosfera devido às atividades humanas 2,3,4,5,6,7. Nos EUA, a maior densidade de emissões de CO2 é originária principalmente da combustão de combustíveis fósseis no setor de energia, especificamente usinas de geração de energia elétrica 3,7,8,9. Assim, as tecnologias de captura e utilização de carbono (CCU) surgiram como uma das principais estratégias para reduzir as emissões de GEEem 2,7,10. Estes incluem sistemas biológicos que utilizam a luz solar para converter CO2 e água via fotossíntese, na presença de nutrientes, à biomassa. O uso de microalgas foi proposto devido à taxa de crescimento rápido, alta capacidade de fixação de CO2 e alta capacidade de produção. Além disso, as microalgas têm amplo potencial de bioenergia porque a biomassa pode ser convertida em produtos de interesse, como biocombustíveis que podem substituir combustíveis fósseis 7,9,10,11,12.
As microalgas podem crescer e alcançar a conversão biológica em uma variedade de sistemas de cultivo ou reatores, incluindo lagoas de pista abertas e fotobioreatores fechados 13,14,15,16,17,18,19. Os pesquisadores têm estudado as vantagens e limitações que determinam o sucesso do bioprocesso em ambos os sistemas de cultivo, em condições internas ou externas 5,6,16,20,21,22,23,24,25 . Lagoas abertas são os sistemas de cultivo mais comuns para captura e utilização de carbono em situações onde o gás de chaminé pode ser distribuído diretamente da pilha. Este tipo de sistema de cultivo é relativamente barato, é fácil de escalar, tem baixos custos de energia e tem baixos requisitos de energia para mistura. Além disso, esses sistemas podem ser facilmente co-localizados com a usina para tornar o processo da CCU mais eficiente. No entanto, existem algumas desvantagens que precisam ser consideradas, como a limitação na transferência de gás/massa líquida de CO2. Embora existam limitações, as lagoas abertas de pista foram propostas como o sistema mais adequado para a produção de biocombustíveis microángicos ao ar livre 5,9,11,16,20.
Neste artigo, detalhamos um método para cultivo de microalgas em lagoas abertas de pista que combina a captura de carbono do gás de chaminucultura de uma usina de gás natural. O método consiste em um sistema semi-automatizado que controla a injeção de gás de chaminático com base no pH da cultura; o sistema monitora e registra o status de cultura chlorella sorokiniana em tempo real usando densidade óptica, oxigênio dissolvido (DO), eletrocondutividade (CE) e sensores de temperatura de ar e lagoa. Os dados de biomassa de algas e injeção de gás de flua são coletados por um data logger a cada 10 minutos na instalação de Energia Elétrica de Tucson. A manutenção da cepa de algas, a escala, as medições de controle de qualidade e a caracterização da biomassa (por exemplo, correlação entre densidade óptica, g/L e conteúdo lipíduo) são realizadas em um ambiente laboratorial na Universidade do Arizona. Um protocolo anterior esboçou um método para otimizar as configurações de gás de flua para promover o crescimento de microalgas em fotobioreatores via simulaçãode computador 26. O protocolo aqui apresentado é único na forma de utilizar lagoas abertas de pista e foi projetado para ser implementado no local em uma usina de gás natural, a fim de fazer uso direto do gás de chaminuto produzido. Além disso, medições de densidade óptica em tempo real fazem parte do protocolo. O sistema como descrito é otimizado para um clima semiárido quente (Köppen BSh), que exibe baixa precipitação, variabilidade significativa na precipitação de ano para ano, baixa umidade relativa, altas taxas de evaporação, céu claro e radiação solar intensa27.
Neste estudo, demonstramos que o acoplamento sinérgico da captura de carbono do gás fluído e o cultivo de microalgas é possível em um clima semiárido quente. O protocolo experimental para o sistema semi-automatizado de lagoas de pista de corrida integra tecnologia de ponta para monitorar parâmetros relevantes em tempo real que se correlacionam com o crescimento de algas ao usar gás de chaminé como fonte de carbono. O protocolo proposto visa reduzir a incerteza no cultivo de algas, que é uma das principais desva…
The authors have nothing to disclose.
Este trabalho foi apoiado através do projeto Regional Algal Feedstock Testbed, Departamento de Energia dos EUA DE-EE0006269. Agradecemos também a Esteban Jimenez, Jessica Peebles, Francisco Acedo, Jose Cisneros, RAFT Team, Mark Mansfield, funcionários da usina de energia UA e funcionários da usina tep por toda a sua ajuda.
Adjustable speed motor (paddle wheel system) | Leeson | 174307 | Lesson 174307.00, type: SCR Voltage; Amps:10 |
Aluminum weight boats | Fisher Scientific | 08-732-102 | Fisherbrand Aluminum Weighing Dishes |
Ammonium Iron (III) (NH₄)₅[Fe(C₆H₄O₇)₂] | Fisher Scientific | 1185 – 57 – 5 | Medium preparation. Ammonium iron(III) citrate |
Ammonium Phosphate | Sigma-Aldrich | 7722-76-1 | This chemical is used for the optimized medium |
Ampicillin sodium salt | Sigma Aldrich | A9518-5G | This chemical is used for avoiding algae contamination |
Autoclave | Amerex Instrument Inc | Hirayama HA300MII | |
Bacto agar | Fisher Scientific | BP1423500 | Fisher BioReagents Granulated Agar |
Bleach | Clorox | Germicidal Bleach, concentrated clorox | |
Boric Acid (H3BO3) | Fisher Scientific | 10043-35-3 | Trace Elelements: Boric acid |
Calcium chloride dihydrate (CaCl2*2H2O) | Sigma-Aldrich | 10035-04-8 | Medium preparation. Calcium chloride dihydrate |
Carboys (20 L) | Nalgene – Thermo Fisher Scientific | 2250-0050PK | Polypropylene Carboy w/Handles |
Centrifuge | Beckman Coulter, Inc | J2-21 | |
Chloroform | Sigma-Aldrich | 67-66-3 | This chemical is used for lipid extraction |
Citraplex 20% Iron | Loveland Products | SDS No. 1000595582 -17-LPI | https://www.fbn.com/direct/product/Citraplex-20-Iron#product_info |
Cobalt (II) nitrate hexahydrate (Co(NO3)2*6H2O) | Sigma-Aldrich | 10026-22-9 | Trace Elements: Cobalt (II) nitrate hexahydrate |
Compressor | Makita | MAC700 | This equipment is used for the injection CO2 system |
Control Valve | Sierra Instruments | SmartTrak 100 | This item needs to be customized for your application. In our case, it was used a 5% CO2 and 95% air mixture. |
Copper (II) Sulfate Pentahydrate (CuSO4*5H2O) | Sigma-Aldrich | 7758-99-8 | Trace Elements: Copper (II) Sulfate Pentahydrate |
Data Logger: Campbell unit CR3000 | Scientific Campbell | CR3000 | This equipment is used for controlling all the system, motoring and recording data |
Dissolvde Oxygen Solution | Campbell Scientific | 14055 | Dissolved oxygen electrolyte solution DO6002 – Lot No. 211085 |
Dissolved Oxygen probe | Sensorex | | DO6400/T Dissolved Oxygen Sensor with Digital Communication |
Electroconductivity calibration solution | Ricca Chemical Company | 2245 – 32 ( R2245000-1A ) | Conductivity Standard, 5000 uS/cm at 25C (2620 ppm TDS as NaCl) |
Electroconductivity probe sensor | Hanna Instruments | HI3003/D | Flow-thru Conductivity Probe – NTC Sensor, DIN Connector, 3m Cable |
Ethylenediaminetetraacetic acid disodium salt dihydrate (Na2EDTA*2H2O) | Sigma-Aldrich | 6381-92-6 | Medium Preparation: Ethylenediaminetetraacetic acid disodium salt dihydrate |
Filters | Fisher Scientific | 09-874-48 | Whatman Binder-Free Glass Microfiber Filters |
Flasks | Fisher scientific | 09-552-40 | Pyrex Fernbach Flasks |
Furnace | Hogentogler | Model: F6020C-80 | Thermo Sicentific Thermolyne F6020C – 80 Muffle Furnace |
Glass dessicator | VWR International LLC | 75871-430 | Type 150, 140 mm of diameter |
Glass funnel | Fisher Scientific | FB6005865 | Fisherbrand Reusable Glass Long-Stem Funnels |
Laminar flow hood | Fisher Hamilton Safeair | Fisher Hamilton Stainless Safeair hume hood | |
Magnesium sulfate heptahydrate (MgSO4*7H2O) | Fisher Scientific | 10034 – 99 – 8 | Medium Preparation: Magnesium sulfate heptahydrate |
Methanol | Sigma-Aldrich | 67-56-1 | Lipid extraction solvent |
Micro bubble Diffuser | Pentair Aquatic Eco-Systems | 1PMBD075 | This equipment is used for the injection CO2 system |
Microalgae: Chlorella Sorokiniana | NAABB | DOE 1412 | |
Microoscope | Carl Zeiss 4291097 | ||
Microwave assistant extraction | MARS, CEM Corportation | CEM Mars 5 Xtraction 230/60 Microwave Accelerated Reaction System. Model: 907601 | |
MnCl2*4H2O | Sigma-Aldrich | 13446-34-9 | Manganese(II) chloride tetrahydrate |
Mortars | Fisher Scientific | FB961B | Fisherbrand porcelein mortars |
Nitrogen evaporator | Organomation | N-EVAP 112 Nitrogen Evaporatpr (OA-SYS Heating System) | |
Oven | VWR International LLC | 89511-410 | Forced Air Oven |
Paddle Wheel | 8-blade horizontal axis propeller. This usually comes as part of the paddlewheel reactor. | ||
Paddle wheel motor | Leeson | M1135042.00 | Leeson, Model: CM34025Nz10C; 1/4 HP; Volts 90; FR 34; 62 RPM. |
Pestles | Fisher Scientific | FB961M | Fisherbrand porcelein pestles |
pH and EC Transmitter | Hanna Instruments | HI98143 | Hanna Instruments HI98143-04 pH and EC Transmitter with Galvanic isolated 0-4V. |
pH calibration solutions | Fisher Scientific | 13-643-003 | Thermo Scientific Orion pH Buffer Bottles |
pH probe sensor | Hanna Instruments | HI1006-2005 | Hanna Instruments HI1006-2005 Teflon pH Electrode with matching pin 5m. |
Pippete tips | Fisher Scientific | 1111-2821 | 1000 ul TipOne graduated blue tip in racks |
Pippetter | Fisher Scientific | 13-690-032 | Eppendorf Reserch plus Variable Adjustable Volume Pipettes: Single-channel |
Plastic cuvettes | Fisher scientific | 14377017 | BrandTech BRAND Plastic Cuvettes |
Plates | Fisher scientific | 08-757-100D | Corning Falcon Bacteriological Petri Dishes with Lid |
Potash | This chemical is used for the optimazed medium preparation. It was bought in a fertilizer local company | ||
Potassium phosphate dibasic (K2HPO4) | Sigma-Aldrich | 7758 -11 – 4 | Medium Preparation: Potassium phosphate dibasic |
Pyrex reusable Media Storage Bottles | Fisher scientific | 06-414-2A | 1 L and 2 L bottels – PYREX GL45 Screw Caps with Plug Seals |
Raceway Pond | Similar equipment can be bought at https://microbioengineering.com/products | ||
Real Time Optical Density Sensor | University of Arizona | This equipment was design and build by a member of the group | |
RS232 Cable | Sabrent | Sabrent USB 2.0 to Serial (9-Pin) DB-9 RS-232 Converter Cable, Prolific Chipset, Hexnuts, [Windows 10/8.1/8/7/VISTA/XP, Mac OS X 10.6 and Above] 2.5 Feet (CB-DB9P) | |
Shaker Table | Algae agitation 150 rpm | ||
Sodium Carbonate (Na2CO3) | Sigma-Aldrich | 497-19-8 | Sodium carbonate |
Sodium molybdate dihydrate (Na2MoO4*2H2O) | Sigma-Aldrich | 10102-40-6 | Medium Preparation: Sodium molybdate dihydrate |
Sodium nitrate (NaNO3) | Sigma-Aldrich | 7631-99-4 | Medium Preparation: Sodium nitrate |
Spectophotometer | Fisher Scientific Company | 14-385-400 | Thermo Fisher Scientific – 10S UV-Vis GENESTYS Spectrophotometer cylindrical Longpath cell holder; internal reference dectector, Xenon flash lamp; dual silicon photodiode; 240V, 50 to 60Hz selected automatically. |
Test tubes | Fisher Scientific | 14-961-27 | Fisherbrand Disposable Borosilicate Glass Tubes with Plain End (10 ml) |
Thermocouples type K | Omega | KMQXL-125G-6 | |
Urea | Sigma-Aldrich | 2067-80-3 | Urea |
Vacuum filtration system | Fisher Scientific | XX1514700 | MilliporeSigma Glass Vacuum Filter Holder, 47 mm. The system includes: Ground glass flask attachment, coarse-frit glass filter support, and flask |
Vacuum pump | Grainger | Marathon Electric AC Motor Thermally protected G588DX – MOD 5KH36KNA510X. HP 1/4. RPM 1725/1425 | |
Zinc sulfate heptahydrate (ZnSO4*7H2O) | Sigma-Aldrich | 7446-20-0 | Zinc sulfate heptahydrate |