Представлено здесь протокол для Pseudomonas aeruginosa инфекции и фаг терапии применения в муковисцидоз (CF) эмбрионов зебры.
Устойчивость к противомикробным препаратам, которое является одним из основных следствий диагностической неопределенности и чрезмерной предписания противомикробных препаратов, является все более признанной причиной тяжелых инфекций, осложнений и смертности во всем мире, что оказывает огромное воздействие на наше общество и систему здравоохранения. В частности, пациенты с ослабленной иммунной системой или уже существующими и хроническими патологиями, такими как муковисцидоз (CF), подвергаются частым антибиотикам для борьбы с инфекциями с появлением и распространением мультирезистентных изолятов. Поэтому существует настоятельная необходимость в решении альтернативных методов лечения для противодействия бактериальным инфекциям. Использование бактериофагов, естественных врагов бактерий, может быть возможным решением. Протокол, подробно описанный в этой работе, описывает применение фаговой терапии против инфекции Pseudomonas aeruginosa в эмбрионах зебры. Эмбрионы зебры были инфицированы P. aeruginosa, чтобы продемонстрировать, что фаг-терапия эффективна против инфекций P. aeruginosa, поскольку она снижает летальность, бактериальное бремя и провоспалительный иммунный ответ в эмбрионах CF.
Фаге терапии, использование естественных врагов бактерий для борьбы с бактериальными инфекциями, набирает новый интерес, как бактериальная устойчивость к антибиотикамстановится широко распространенным 1,2. Эта терапия, используемая в течение десятилетий в Восточной Европе, можно считать дополнительным лечением антибиотиков в лечении легочных инфекций у пациентов с CF и возможной терапевтической альтернативой для пациентов, инфицированных бактериями, которые устойчивы ко всем используемым в настоящее времяантибиотикам 2,3. Преимущества антибиотикотерапии в том, что бактериофагы размножаются на месте инфекции, в то время как антибиотики метаболизируются ивыбывают из организма 4,,5. Действительно, администрирование коктейлей вирулентных фагов, изолированных в различных лабораториях, оказалось эффективным в лечении инфекций Pseudomonas aeruginosa в животных моделях, таких как насекомыеи млекопитающие 6,7,8. Фаге терапии было также показано, чтобы быть в состоянии уменьшить бактериальную нагрузку в ожоговых ран, инфицированных P. aeruginosa и Escherichia coli в рандомизированных клиническихиспытаний 9.
Зебрафиш(Danio rerio) недавно стала ценной моделью для изучения инфекций с несколькими патогенами, в том числе P. aeruginosa10,11, Mycobacterium abscessus и Burkolderia cepacia12,13. Путем микроинъекций бактерий сразу вциркуляцию крови зародыша 14 легко установить системную инфекцию которая противодействована зебрафиш врожденной иммунной системой, которая эволюционирована сохранена с нейтрофилами и поколением макрофагов подобно к людским двойнику. Кроме того, в течение первого месяца жизни эмбрионы зебры не имеют адаптивного иммунного ответа, что делает их идеальными моделями для изучения врожденного иммунитета, который является критическим защитным механизмом в легочныхинфекциях человека 15. Зебрафиш недавно появилась как мощная генетическая модель системы, чтобы лучше понять начало CF и разработать новыефармакологические методы лечения 10,,16,17. CF зебрафиш модель cftr нокдаун генерируется с морфолино инъекции в зебрафиш представил смоченной реакции респираторного всплеска и снижениемиграции нейтрофилов 10, в то время как cftr нокаут приводит к нарушению внутреннего положения органа и разрушение экзокринной поджелудочной железы, фенотип, которыйотражает болезни человека 16,17. Наибольший интерес представляет вывод о том, что бактериальная нагрузка P. aeruginosa была значительно выше в cftr-потеря-функции эмбрионов, чем в контроле на 8 часов после заражения (hpi), который параллели результаты, полученные с мышами и человека бронхиальных эпителиальныхклеток 2,18. cftr
В этой работе мы демонстрируем, что фаг-терапия эффективна против инфекций P. aeruginosa у эмбрионов зебры.
В этой рукописи мы описали протокол для выполнения P. aeruginosa (PAO1) инфекции в эмбрионах зебры и как применять фаг терапии с коктейлем фагов ранее определены как способные заразить PAO1, чтобы решить ее. Использование бактериофагов в качестве альтернативы лечению антибиотиками представ…
The authors have nothing to disclose.
Эта работа была поддержана Итальянским фондом муковисцидоза (FFC No22/2017; Ассоциазионе “Gli amici della Ritty” Casnigo и FFC No23/2019; Un respiro в Пио Онлус Ла Мано теса Онлус).
Bacto Agar | BD | 214010 | |
Calcium chloride | Sigma-Aldrich | 10043-52-4 | |
CsCl | Sigma-Aldrich | 289329 | |
Dulbecco's phospate buffered saline PBS | Sigma-Aldrich | D8537 | |
Ethyl 3-aminobenzoate methanesulfonate | Sigma-Aldrich | 886-86-2 | common name tricaine |
Femtojet Micromanipulator | Eppendorf | 5247 | |
Fleming/brown P-97 | Sutter Instrument Company | P-97 | |
LE-Agarose | Sigma-Aldrich | 11685660001 | |
Low Melting Agarose | Sigma-Aldrich | CAS 9012-36-6 | |
Magnesium sulfate | Sigma-Aldrich | 7487-88-9 | |
Methyl Blue | Sigma-Aldrich | 28983-56-4 | |
Microinjection needles | Harvard apparatus | ||
N-Phenylthiourea >=98% | Aldrich-P7629 | 103-85-5 | |
Oligo Morpholino | Gene Tools | designed by the researcher | |
PEG6000 | Calbiochem | 528877 | |
Phenol Red Solution | Sigma-Aldrich | CAS 143-74-B | |
Potassium chloride | Sigma-Aldrich | 7447-40-7 | |
Pronase | Sigma-Aldrich | 9036-06-0 | |
Sodium chloride ACS reagent, ≥99.0% | Sigma-Aldrich | S9888 | |
Stereomicroscope | Leica | S9I | |
Tris HCl | Sigma-Aldrich | T5941 | |
Triton X | Sigma-Aldrich | T9284 | |
Tryptone | Oxoid | LP0042B | |
Yeast extract | Oxoid | LP0021B | |
Z-MOLDS Microinjection | Word Precision Instruments |