Summary

Intra-arterielle Lieferung von neuronalen Stammzellen an das Ratten- und Maushirn: Anwendung auf zerebrale Ischämie

Published: June 26, 2020
doi:

Summary

Eine Methode zur Abgabe neuronaler Stammzellen, anpassungsfähig für Injektionslösungen oder Suspensionen, durch die gemeinsame Halsschlagader (Maus) oder externe Halsschlagader (Ratte) nach ischämischem Schlaganfall wird berichtet. Injizierte Zellen sind breit über das Gehirn Parenchym verteilt und kann bis zu 30 d nach der Geburt nachgewiesen werden.

Abstract

Die Therapie mit neuronalen Stammzellen (NSC) ist eine neue innovative Behandlung bei Schlaganfall, traumatischen Hirnverletzungen und neurodegenerativen Erkrankungen. Im Vergleich zur intrakraniellen Verabreichung ist die intraarterielle Verabreichung von NSCs weniger invasiv und erzeugt eine diffusere Verteilung von NSCs innerhalb des Gehirnparenchyms. Darüber hinaus ermöglicht die intraarterielle Abgabe den Erstpasseffekt in der Hirnzirkulation, wodurch das Potenzial für das Einfangen von Zellen in peripheren Organen, wie Leber und Milz, verringert wird, eine Komplikation, die mit peripheren Injektionen verbunden ist. Hier beschreiben wir die Methodik, sowohl bei Mäusen als auch bei Ratten, für die Lieferung von NSCs durch die gemeinsame Halsschlagader (Maus) oder externe Halsschlagader (Ratte) an die ipsilaterale Hemisphäre nach einem ischämischen Schlaganfall. Anhand von GFP-markierten NSCs veranschaulichen wir die weitverbreitete Verteilung, die in der ipsilateralen Hemisphäre des Nagetiers bei 1 d, 1 Woche und 4 Wochen nach der postischen Verabreichung erreicht wird, mit einer höheren Dichte an oder in der Nähe der ischämischen Verletzungsstelle. Neben dem Langzeitüberleben zeigen wir Nachweise für eine Differenzierung von GFP-markierten Zellen nach 4 Wochen. Der hier für NSCs beschriebene intraarterielle Verabreichungsansatz kann auch für die Verabreichung therapeutischer Verbindungen verwendet werden und hat somit eine breite Anwendbarkeit auf verschiedene ZNS-Verletzungs- und Krankheitsmodelle über mehrere Arten hinweg.

Introduction

Die Stammzelltherapie (SC) birgt ein enormes Potenzial zur Behandlung neurologischer Erkrankungen wie Schlaganfall, Kopftrauma und Demenz1,2,3,4,5,6., Eine effiziente Methode zur Lieferung exogener SCs an das erkrankte Gehirn bleibt jedoch problematisch2,6,7,8,9,10,11,12,13. SCs, die über periphere Verabreichungswege, einschließlich intravenöser (IV) oder intraperitonealer (IP) Injektionen, geliefert werden, unterliegen einer Erstpassfilterung in der Mikrozirkulation, insbesondere in der Lunge, Leber, Milz und Muskel8,9,13,14, erhöhung der Wahrscheinlichkeit der Ansammlung von Zellen in Nicht-Ziel-Bereichen. Die invasive intracerebrale Injektionsmethode führt zu lokalisierten Hirngewebeschäden und einer sehr eingeschränkten Verteilung von SCs in der Nähe der Injektionsstelle2,6,8,14,15,16. Wir haben vor kurzem eine katheterbasierte intraarterielle Injektionsmethode eingeführt, um exogene neuronale SCs (NSCs) zu liefern, die hier in einem Nagetiermodell des fokalen ischämischen Schlaganfalls beschrieben wird. Wir induzieren vorübergehende (1 h) Ischämie-Reperfusionsverletzung in einer Hemisphäre mit einem Silikongummi beschichteten Filament, um die linke mittlere Hirnarterie (MCA) in der Maus oder Ratte17,18,19zu verschließen. In diesem Modell haben wir reproduzierbar etwa 75-85% Depression des zerebralen Blutflusses (CBF) in der ipsilateralen Hemisphäre mit Laser Doppler oder Laser speckle Imaging17,19beobachtet, was konsistente neurologische Defizite17,18,19ergibt.

Aus zeitsparenden Gründen wird das Video mit doppelter Normalgeschwindigkeit abgespielt und routinemäßige chirurgische Eingriffe wie Hautvorbereitung und Wundverschluss mit Naht und die Verwendung und Einrichtung der motorisierten Spritzenpumpe werden nicht dargestellt. Die Methode der intraarteriellen Abgabe von NSCs wird im Kontext des mittleren zerebralen Arterienverschlussmodells (MCAO) des experimentellen Schlaganfalls bei Nagetieren demonstriert. Daher schließen wir das transiente ischämische Schlaganfallverfahren ein, um später zu zeigen, wie die zweite Operation, die intraarterielle Injektion, mit der vorherigen chirurgischen Stelle am selben Tier durchgeführt wird. Die Durchführbarkeit der intraarteriellen NSC-Verabreichung in Nagetierschlagmodellen wird durch die Bewertung der Verteilung und des Überlebens exogener NSCs demonstriert. Die Wirksamkeit der NSC-Therapie zur Dämpfung der Hirnpathologie und neurologischen Dysfunktion wird separat berichtet.

Protocol

Alle Verfahren zu tierischen Themen wurden vom Institutional Animal Care and Use Committee (IACUC) der University of Kentucky genehmigt, und es wurde entsprechend darauf geachtet, Stress oder Schmerzen im Zusammenhang mit einer Operation zu minimieren. 1. Herstellung von Injektionskatheter und chirurgischen Haken Konstruieren Sie den Injektionskatheter (Abbildung 1). Sammeln Sie notwendige Materialien wie: MRE010, MRE025 und MRE050 Rohre, 20 G, 26 G und …

Representative Results

GFP-markierte NSCs wurden im ischämischen Gehirn leicht nachgewiesen, vor allem in der ipsilateralen Hemisphäre, insbesondere im Penumbra und entlang des Verletzungsrands (Abbildung 6). Der Prüfer wurde während der Bildgebung und Analyse einmalig blind. Zum Beispiel wurden bei 1 d nach der Injektion NSCs innerhalb des Maus-Hippocampus nachgewiesen. Eine Teilmenge von NSCs zeigte die Koexpression des unreifen Neuronenmarkers DCX im Dentate-Gyrus bereits zu dies…

Discussion

Die Stammzelltherapie bei neurologischen Erkrankungen befindet sich noch in einem frühen explorativen Stadium. Ein großes Problem ist, dass es keine etablierte Methode für eine ausreichende Bereitstellung von SCs oder NSCs in das Gehirn gibt.

Obwohl exogene SCs/NSCs im Gehirn nach intravenöser (IV), intraperitonealer (IP) oder intraparenchymaler/intracerebraler Injektion nachgewiesen werden können, hat jeder Verabreichungsansatz Nachteile. Die nachweisbare Population im Gehirn wird mit ei…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Diese Forschung wurde unterstützt von den folgenden: AHA Award 14SDG20480186 für LC, Subject Innovation Team der Shanxi University of Chinese Medicine 2019-QN07 für BZ, und Kentucky Spinal Cord and Head Injury Research Trust Grant 14-12A für KES und LC.

Materials

20 G needle Becton & Dickinson BD PrecisionGlide 305175 preparation of injection catheter
26 G needle Becton & Dickinson BD PrecisionGlide 305111 preparation of injection catheter
27 G needle Becton & Dickinson BD PrecisionGlide 305136 preparation of injection catheter
4-0 NFS-2 suture with needle Henry Schein Animal Health 56905 surgery
6-0 nylon suture Teleflex/Braintree Scientific 104-s surgery
Accutase STEMCELL Technologies 7922 cell detachment solution
blade Bard-Parker 10 surgery
Buprenorphine-SR Lab ZooPharm Buprenorphine-SR Lab® analgesia (0.6-1 mg/kg over 3 d)
Calcium/magnisum free PBS VWR 02-0119-0500 NSC dissociation
DCX antibody Millipore AB2253 immunostaining
GFAP antibody Invitrogen 180063 immunostaining
Isoflurane Henry Schein Animal Health 50562-1 surgery
MCAO filament for mouse Doccol 702223PK5Re surgery
MCAO filament for rat Doccol 503334PK5Re surgery
MRE010 catheter Braintree Scientific MRE010 preparation of injection catheter
MRE025 catheter Braintree Scientific MRE025 preparation of injection catheter
MRE050 catheter Braintree Scientific MRE050 preparation of injection catheter
Nu-Tears Ointment NuLife Pharmaceuticals Nu-Tears Ointment eye care during surgery
S&T Forceps – SuperGrip Tips JF-5TC Angled Fine Science Tools 00649-11 surgery
S&T Forceps – SuperGrip Tips JF-5TC Straight Fine Science Tools 00632-11 surgery
Superglue Pacer Technology 15187 preparation of injection catheter
syringe pump Kent Scientific GenieTouch surgery
Tuj1 antibody Millipore MAb1637 immunostaining
two-component 5 minute epoxy Devcon 20445 preparation of injection catheter
Vannas spring scissors Fine Science Tools 15000-08 surgery
vascular clamps Fine Science Tools 00400-03 surgery
Zeiss microscope Zeiss Axio Imager 2 microscopy

Referenzen

  1. Wang, Y. Stroke research in 2017: surgical progress and stem-cell advances. The Lancet. Neurology. 17, 2-3 (2018).
  2. Bliss, T., Guzman, R., Daadi, M., Steinberg, G. K. Cell transplantation therapy for stroke. Stroke. 38, 817-826 (2007).
  3. Boese, A. C., Le, Q. E., Pham, D., Hamblin, M. H., Lee, J. P. Neural stem cell therapy for subacute and chronic ischemic stroke. Stem Cell Research & Therapy. 9, 154 (2018).
  4. Kokaia, Z., Llorente, I. L., Carmichael, S. T. Customized Brain Cells for Stroke Patients Using Pluripotent Stem Cells. Stroke. 49, 1091-1098 (2018).
  5. Savitz, S. I. Are Stem Cells the Next Generation of Stroke Therapeutics. Stroke. 49, 1056-1057 (2018).
  6. Wechsler, L. R., Bates, D., Stroemer, P., Andrews-Zwilling, Y. S., Aizman, I. Cell Therapy for Chronic Stroke. Stroke. 49, 1066-1074 (2018).
  7. Muir, K. W. Clinical trial design for stem cell therapies in stroke: What have we learned. Neurochemistry International. 106, 108-113 (2017).
  8. Guzman, R., Janowski, M., Walczak, P. Intra-Arterial Delivery of Cell Therapies for Stroke. Stroke. 49, 1075-1082 (2018).
  9. Misra, V., Lal, A., El Khoury, R., Chen, P. R., Savitz, S. I. Intra-arterial delivery of cell therapies for stroke. Stem Cells and Development. 21, 1007-1015 (2012).
  10. Argibay, B., et al. Intraarterial route increases the risk of cerebral lesions after mesenchymal cell administration in animal model of ischemia. Scientific Reports. 7, 40758 (2017).
  11. Kelly, S., et al. Transplanted human fetal neural stem cells survive, migrate, and differentiate in ischemic rat cerebral cortex. Proceedings of the National Academy of Sciences of the United States of America. 101, 11839-11844 (2004).
  12. Chen, L., Swartz, K. R., Toborek, M. Vessel microport technique for applications in cerebrovascular research. Journal of Neuroscience Research. 87, 1718-1727 (2009).
  13. Fischer, U. M., et al. Pulmonary passage is a major obstacle for intravenous stem cell delivery: the pulmonary first-pass effect. Stem Cells and Development. 18, 683-692 (2009).
  14. Misra, V., Ritchie, M. M., Stone, L. L., Low, W. C., Janardhan, V. Stem cell therapy in ischemic stroke: role of IV and intra-arterial therapy. Neurology. 79, 207-212 (2012).
  15. Muir, K. W., Sinden, J., Miljan, E., Dunn, L. Intracranial delivery of stem cells. Translational Stroke Research. 2, 266-271 (2011).
  16. Boltze, J., et al. The Dark Side of the Force – Constraints and Complications of Cell Therapies for Stroke. Frontiers in Neurology. 6, 155 (2015).
  17. Huang, C., et al. Noninvasive noncontact speckle contrast diffuse correlation tomography of cerebral blood flow in rats. Neuroimage. 198, 160-169 (2019).
  18. Wong, J. K., et al. Attenuation of Cerebral Ischemic Injury in Smad1 Deficient Mice. PLoS One. 10, 0136967 (2015).
  19. Zhang, B., et al. Deficiency of telomerase activity aggravates the blood-brain barrier disruption and neuroinflammatory responses in a model of experimental stroke. Journal of Neuroscience Research. 88, 2859-2868 (2010).
  20. Walker, T. L., Yasuda, T., Adams, D. J., Bartlett, P. F. The doublecortin-expressing population in the developing and adult brain contains multipotential precursors in addition to neuronal-lineage cells. The Journal of Neuroscience. 27, 3734-3742 (2007).
  21. Progatzky, F., Dallman, M. J., Lo Celso, C. From seeing to believing: labelling strategies for in vivo cell-tracking experiments. Interface Focus. 3, 20130001 (2013).
  22. Bertrand, L., Dygert, L., Toborek, M. Induction of Ischemic Stroke and Ischemia-reperfusion in Mice Using the Middle Artery Occlusion Technique and Visualization of Infarct Area. Journal of Visualized Experiments. , (2017).
  23. Leda, A. R., Dygert, L., Bertrand, L., Toborek, M. Mouse Microsurgery Infusion Technique for Targeted Substance Delivery into the CNS via the Internal Carotid Artery. Journal of Visualized Experiments. , (2017).
  24. Chua, J. Y., et al. Intra-arterial injection of neural stem cells using a microneedle technique does not cause microembolic strokes. Journal of Cerebral Blood Flow and Metabolism. 31, 1263-1271 (2011).
  25. Potts, M. B., Silvestrini, M. T., Lim, D. A. Devices for cell transplantation into the central nervous system: Design considerations and emerging technologies. Surgical Neurology International. 4, 22-30 (2013).
  26. Duma, C., et al. Human intracerebroventricular (ICV) injection of autologous, non-engineered, adipose-derived stromal vascular fraction (ADSVF) for neurodegenerative disorders: results of a 3-year phase 1 study of 113 injections in 31 patients. Molecular Biology Reports. 46, 5257-5272 (2019).

Play Video

Diesen Artikel zitieren
Zhang, B., Joseph, B., Saatman, K. E., Chen, L. Intra-Arterial Delivery of Neural Stem Cells to the Rat and Mouse Brain: Application to Cerebral Ischemia. J. Vis. Exp. (160), e61119, doi:10.3791/61119 (2020).

View Video