Current methods to measure alcohol sensitivity in Drosophila are designed to test groups of flies. We present a simple, low-cost, high-throughput assay for assessing alcohol sedation sensitivity in large numbers of single flies. The method does not require specialized tools and can be performed in any laboratory using common materials.
Drosophila melanogaster provides an excellent model to study the genetic underpinnings of alcohol sensitivity. In contrast to studies in human populations, the Drosophila model allows strict control over genetic background, and virtually unlimited numbers of individuals of the same genotype can be reared rapidly under well-controlled environmental conditions without regulatory restrictions and at relatively low cost. Flies exposed to ethanol undergo physiological and behavioral changes that resemble human alcohol intoxication, including loss of postural control, sedation, and development of tolerance. Here, we describe a simple, low-cost, high-throughput assay for assessing alcohol sedation sensitivity in large numbers of single flies. The assay is based on video recording of single flies introduced without anesthesia in 24-well cell culture plates in a set-up that enables synchronous initiation of alcohol exposure. The system enables a single person to collect individual ethanol sedation data on as many as 2,000 flies within an 8 h work period. The assay can, in principle, be extended to assess the effects of exposure to any volatile substance and applied to measure effects of acute toxicity of volatiles on other insects, including other fly species.
The National Institute on Alcohol Abuse and Alcoholism reports that in 2015 excessive alcohol consumption, designated as "alcohol use disorder", affected an estimated 16 million people in the United States. Alcohol abuse causes a wide range of adverse physiological effects and is a major cause of death in the U.S. In humans, decreased sensitivity, or a low level of response to alcohol, has a strong genetic component and is associated with a higher risk of developing alcohol use disorders1,2,3,4. Genetic risk studies on human populations are challenging because of population admixture, diverse developmental histories and environmental exposures, and reliance on self-reported questionnaires to quantify alcohol-related phenotypes, which are often confounded with other neuropsychiatric conditions.
Drosophila melanogaster provides an excellent model to study the genetic underpinnings of alcohol sensitivity5,6,7,8. The Drosophila model allows strict control over genetic background, and virtually unlimited numbers of individuals of the same genotype can be reared rapidly under well-controlled environmental conditions without regulatory restrictions and at relatively low cost. In addition to publicly available mutations and RNAi lines that target a majority of genes in the genome, the availability of the Drosophila melanogaster Genetic Reference Panel (DGRP), a population of 205 inbred wild-derived lines with complete genome sequences, has enabled genome-wide association studies9,10. Such studies have identified genetic networks associated with effects on development time and viability upon developmental exposure to ethanol11,12. Evolutionary conservation of fundamental biological processes enables translational inferences to be drawn by superimposing human orthologs on their fly counterparts.
Flies exposed to ethanol undergo physiological and behavioral changes that resemble human alcohol intoxication, including loss of postural control8, sedation, and development of tolerance13,14,15. Alcohol induced sedation in Drosophila can be quantified using inebriometers. These are 122 cm long vertical glass columns with slanted mesh partitions to which flies can attach16,17,18. A group of at least 50 flies (sexes can be analyzed separately) are introduced in the top of the column and exposed to ethanol vapors. Flies that lose postural control fall through the column and are collected at 1 min intervals. The mean elution time serves as a measure of sensitivity to alcohol intoxication. When flies are exposed to alcohol a second time after recovering from the first exposure, they can develop tolerance, as evident from a shift in mean elution time13,15,19,20. Whereas inebriometer assays have led to identification of genes, genetic networks, and cellular pathways associated with alcohol sedation sensitivity and development of tolerance12,13,14,21, the assay is time consuming, low-throughput, and ineffective for measuring alcohol sensitivity in single flies.
Alternative ethanol sedation assays that do not require the elaborate inebriometer set-up allow for more convenient measurements but are still limited in throughput and generally require analyses of groups of flies rather than individuals21,22,23,24,25. Assessing single flies minimizes the potential for confounding effects due to group interactions, such as those stemming from social behaviors. Here, we present a simple, low-cost, high-throughput assay for assessing alcohol sedation sensitivity in large numbers of single flies.
1. Construction of the testing apparatus
Figure 1: Diagram of the testing apparatus and filming chamber. (A) Upper Diagrams. The top, side, and front views of the testing apparatus are shown, respectively. A screen mesh lays flat on top of a 24-well cell culture plate. The wooden craft sticks, represented by the arrowheads, are attached to three adjacent sides for stability and alignment aid, two on the side of the well plate with six wells and one on the side of the plate with four wells. All attachments are hot glued onto the apparatus. (B) Lower Diagrams. The top, side, and front views of the assay set-up are shown, respectively. A slit is cut in the right side of the box, from the opening for the lid to the back of the opening, with the bottom of the slit level to the inner surface. The hole on the top of the box, the surface parallel to the ground, is centered for maximum video exposure. The shaded box represents the video camera. Please click here to view a larger version of this figure.
Figure 2: Photograph of the assay system. The video camera is placed on top of the polystyrene chamber, with the lens inserted in the cut-out hole, illustrated in the diagrams of Figure 1B. Two sets of modified 24-well cell culture plates rest on top of an illumination pad that is inserted in a slit through the side of the chamber. Please click here to view a larger version of this figure.
2. Construction of the filming chamber
3. Preparation of the testing apparatus and flies
Figure 3: A fly aspirator in which flies are collected with an interchangeable mouthpiece attached to flexible tubing and a wide bore serological pipette with a cotton gauze stopper. The operator can aspirate a single fly into the pipette for transfer without anesthesia. Please click here to view a larger version of this figure.
4. Testing the flies
5. Determination of fly sedation time
Two 24-well microtiter plates could generate data simultaneously on 48 individual flies within as little as 10 min. Table 1 lists measurements of ethanol sedation times for 48 individual flies, males and females separately, of two DGRP lines with different sensitivities to alcohol exposure on development time and viability13. Flies of line RAL_555 were less sensitive than line RAL_177 (Figure 4, Table 2; p < 0.0001, ANOVA). Males and females of RAL_177 showed no sexually dimorphic effect (Figure 4, Table 2; p > 0.1, ANOVA), whereas females of line RAL_555 were less sensitive to ethanol exposure than the males (Figure 4, Table 2; p < 0.006, ANOVA). The large number of flies that can be measured simultaneously and the ability to measure sexes and different lines contemporaneously can increase accuracy by reducing error due to environmental variation.
A. | Ethanol Sedation Time (s) | B. | Ethanol Sedation Time (s) | ||||||||||
Females | Males | Females | Males | ||||||||||
414 | 365 | 477 | 423 | 568 | 309 | 937 | 742 | 622 | 460 | 331 | 498 | ||
201 | 384 | 498 | 411 | 523 | 626 | 791 | 619 | 197 | 467 | 455 | 562 | ||
228 | 364 | 333 | 440 | 403 | 267 | 504 | 744 | 513 | 570 | 582 | 506 | ||
440 | 416 | 404 | 408 | 422 | 384 | 970 | 540 | 369 | 865 | 533 | 492 | ||
888 | 283 | 285 | 322 | 369 | 287 | 595 | 550 | 606 | 392 | 544 | 345 | ||
1079 | 519 | 315 | 393 | 376 | 284 | 418 | 709 | 553 | 308 | 477 | 388 | ||
718 | 287 | 432 | 275 | 206 | 411 | 366 | 564 | 558 | 385 | 576 | 377 | ||
598 | 337 | 398 | 279 | 631 | 372 | 437 | 692 | 578 | 460 | 511 | 412 | ||
241 | 398 | 364 | 347 | 374 | 808 | 665 | 729 | 484 | 532 | 425 | 354 | ||
229 | 423 | 534 | 386 | 396 | 628 | 312 | 576 | 305 | 334 | 531 | 506 | ||
388 | 488 | 451 | 523 | 322 | 533 | 682 | 638 | 420 | 560 | 548 | 379 | ||
252 | 529 | 375 | 427 | 330 | 540 | 1045 | 741 | 708 | 832 | 509 | 472 | ||
674 | 401 | 303 | 401 | 307 | 311 | 394 | 675 | 381 | 477 | 449 | 784 | ||
303 | 453 | 351 | 429 | 525 | 262 | 540 | 690 | 520 | 556 | 495 | 226 | ||
258 | 483 | 302 | 389 | 562 | 319 | 356 | 615 | 336 | 454 | 524 | 590 | ||
346 | 426 | 385 | 416 | 596 | 287 | 626 | 678 | 840 | 634 | 677 | 509 |
Table 1: Measurements of ethanol sedation times (s) of individual flies of (A) DGRP lines RAL_177 and (B) RAL_555 for separate sexes (n = 48). See also Table 2, Figure 4.
Figure 4: Alcohol sedation times of DGRP lines RAL_177 and RAL_555. The bars represent means and the error bars SEM (n = 48). Sedation times for RAL_177 flies were less than those for RAL_55 flies (p < 0.0001, ANOVA). Individual data points are indicated in Table 1. Additional statistically significant differences between sexes and lines are indicated in the text and in Table 2. Please click here to view a larger version of this figure.
Analysis | Source of Variation | df | SS | F-Value | P-value |
Full Model Pooled | Line | 1 | 769627 | 34.869 | <0.0001 |
Sex | 1 | 105001 | 4.757 | 0.0304 | |
Line x Sex | 1 | 86021 | 3.897 | 0.0498 | |
Error | 188 | 4149491 | |||
Reduced Model Females | Line | 1 | 685126 | 23.58 | <0.0001 |
Error | 94 | 2730718 | |||
Reduced Model Males | Line | 1 | 170522 | 11.3 | 0.0011 |
Error | 94 | 1418774 | |||
Reduced Model RAL_177 | Sex | 1 | 473 | 0.023 | 0.8800 |
Error | 94 | 1943741 | |||
Reduced Model RAL_555 | Sex | 1 | 190549 | 8.12 | 0.0054 |
Error | 94 | 2205751 |
Table 2: Analyses of variance for sedation time across sex and DGRP line. The model used was Y = µ + L + S + LxS + ε, where µ is the overall mean, L is the fixed effect of the DGRP line (RAL_177, RAL_555), S is the fixed effect of sex (male, female), LxS is the interaction term (fixed), and ε is the error term. The models Y = µ + L + ε and Y = µ + S + ε were used for the reduced models. Line, Sex, and the Line x Sex interaction term were all significant in the full model at α < 0.05. Reduced models by sex and DGRP line RAL_555 were also significant at α < 0.01. See also Table 1, Figure 4. df = degrees of freedom, SS = Type I Sums of Squares.
Here, we present a simple, inexpensive, and high-throughput method for assessing sedation time due to ethanol exposure in Drosophila melanogaster. Unlike many current methods, which require group analyses, this assay enables a single person to collect individual sedation time data for ~2,000 flies within an 8 h work period. We found that a single person can score 48 flies for sedation time in about 5 min. At this rate, 2,000 flies can be scored in approximately 4 h, though scoring can be conducted later. With our assay, the recorded sedation time for most flies ranges from 5–15 min at an exposure to 1 mL of 100% ethanol. Lower concentrations of ethanol or smaller delivery volumes will result in longer sedation times.
Current methods for assessing sedation time require testing large numbers of flies without readily enabling measurements on single individuals15,16,17,18,19,20,21,22,23,24,25,26. Many current sedation and sensitivity assays rely upon ST5022,23,24, the timepoint at which 50% of the flies are sedated as a result of ethanol exposure. Although obtaining the ST50 for groups of flies was not the primary motivation for developing this assay, the video recordings demonstrate higher utility compared to current methods, as the recordings can be used to ascertain the ST50 for groups of individually tested flies and to measure the percentage of flies that satisfy a given criterion (e.g., loss of postural control) at any time point. It should be noted that such video analyses would require additional time.
Unlike current inebriometer assays, the method we describe does not require specialized tools to set up and can be performed in any laboratory using common materials. Using this method, we have obtained reliable and consistent sedation times for individual flies. The assay can, in principle, be extended to assess the effects of exposure to any volatile substance. The assay can also be applied to measure effects of acute toxicity of volatiles on other insects, including other fly species. Individual sedation time data can be used to assess the extent of phenotypic variation within a population, such as the DGRP.
We used small insect screen mesh to prevent direct contact with the ethanol solution while allowing adequate quantities of ethanol vapors to reach the fly. The layer of white cheesecloth on top of the screen mesh provides visual contrast between the fly and the surface below and ensures that flies do not get caught in the screen mesh, which could lead to ambiguous determination of loss of postural control. Commercially available membranes that are porous to water and air gave inconsistent results and were insufficiently penetrable to ethanol vapors. We intentionally used small insect screen mesh because it is a uniformly porous material that minimizes variation in ethanol exposure as a result of fly position within a well. Modifications can be made to this protocol based on available materials, although we recommend a controlled behavioral chamber, access to 90%–100% ethanol close to the fly, and uniform ethanol exposure.
Fly position within the cell culture plates should be randomized between replicates to avoid positional bias. For larger experiments that require use of this assay across multiple days and are therefore subject to environmental variation that could influence assay results (e.g., changes in barometric pressure)27, we strongly recommend that flies be tested at the same time each day and randomized both within and across days, especially if different lines and/or sexes are to be compared against one another.
The method we developed is best suited for measuring the effect of acute alcohol exposure but is not suitable for obtaining consumption data or modeling addiction. Alcohol sedation sensitivity data obtained from this assay can, however, be integrated with other measures of alcohol-related phenotypes. One limitation of the system is that the vertical height of standard cell culture plates allows for vertical fly movement that cannot be readily tracked by video for detailed assessment of overall activity or locomotion. However, this limitation does not affect accurate assessment of sedation time. When using flies of different genotypes (e.g., in DGRP-derived outbred populations28), this assay also enables retrieval of individual flies to collect pools of flies with contrasting phenotypes for bulk DNA sequencing and extreme QTL mapping29,30. Overall, this assay permits rapid, inexpensive collection of alcohol sedation data on large numbers of single flies.
The authors have nothing to disclose.
This work was supported by grants DA041613 and GM128974 from the National Institutes of Health to TFCM and RRHA.
24-well Cell Culture Plates | Corning | 3526 | Flat-bottomed; will house flies throughout assay |
Aspirator | |||
Cheesecloth | Genesee Scientific | 53-100 | Widely available. |
Ethanol | Decon Labs | V1001 | Widely available. |
Flexible Plastic Cutting Board (Plate Cover) | Walmart | 550098612 | Any flat plastic that can slide easily and cover a 24-well plate completely. Flexible plastic cutting board works well. |
Gauze (for aspirator) | Honeywell North | 67622 | Widely available. |
Illumination Pad | Amazon (AGPtek) | ASIN B00YA9GP0G | Any light pad to provide contrast is suitable. |
Jumbo Craft Sticks | Michaels | 10334892 | Any craft stick at least 7 cm long is suitable. |
P1000 Pipette Tip (for aspirator) | Genesee Scientific | 24-165RL | Any P1000 pipette tip is suitable. |
Serological Pipette (for aspirator) | Genesee Scientific | 12-104 | |
Small Insect Screen Mesh | Lowe's (Saint-Gobain ADFORS) | 89322 | Any small insect screen mesh is suitable. |
Testing Chamber | Interior space dimension big enough to encompass light pad. Can be constructed from a polystyrene box. | ||
Tygon Tubing (for aspirator) | Grainger | 9CUG7 | Widely available. |
Video Camera | Canon | 1959C001AA | Any video camera is suitable. |