दो निर्माण तकनीकों, लिफ्ट-ऑफ और गीले नक़्क़ाशी, एक पीजोइलेक्ट्रिक सब्सट्रेट, लिथियम निओबेट पर इंटरडिजिटल इलेक्ट्रोड ट्रांसड्यूसर के उत्पादन में वर्णित हैं, व्यापक रूप से सतह ध्वनिक तरंगों को उत्पन्न करने के लिए उपयोग किया जाता है जो अब नैनोस्केल तरल पदार्थों के लिए सूक्ष्म में व्यापक उपयोगिता पाते हैं। के रूप में उत्पादित इलेक्ट्रोड कुशलता से मेगाहर्ट्ज आदेश Rayleigh सतह ध्वनिक तरंगों को प्रेरित करने के लिए दिखाया गया है ।
छोटे पैमाने पर ध्वनिक एक्ट्यूएशन द्वारा तरल पदार्थ और कणों में हेरफेर प्रयोगशाला-ऑन-ए-चिप अनुप्रयोगों के तेजी से विकास में सहायता कर रहा है। मेगाहर्ट्ज-ऑर्डर सतह ध्वनिक तरंग (आरी) उपकरण अपनी सतह पर भारी त्वरण उत्पन्न करते हैं, 108 मीटर/एस2तक, बदले में कई मनाए गए प्रभावों के लिए जिम्मेदार हैं जो एकोस्टोफलुइडिक्स को परिभाषित करने के लिए आए हैं: ध्वनिक स्ट्रीमिंग और ध्वनिक विकिरण बल। इन प्रभावों का उपयोग माइक्रोस्केल पर कण, कोशिका और तरल पदार्थ से निपटने के लिए किया गया है- और यहां तक कि नैनोस्केल पर भी। इस पेपर में हम स्पष्ट रूप से लिथियम निओबेट पर देखे गए उपकरणों के दो प्रमुख निर्माण तरीकों को प्रदर्शित करते हैं: लिफ्ट-ऑफ और गीले नक़्क़ाशी तकनीकों के विवरण को कदम-दर-कदम वर्णित किया गया है। सब्सट्रेट पर जमा इलेक्ट्रोड पैटर्न के साथ-साथ सतह पर उत्पन्न आरी के प्रदर्शन के लिए प्रतिनिधि परिणाम विस्तार से प्रदर्शित किए जाते हैं। निर्माण चाल और समस्या निवारण के रूप में अच्छी तरह से कवर कर रहे हैं। यह प्रक्रिया भविष्य के माइक्रोफ्लुइडिक्स अनुप्रयोगों के लिए उच्च आवृत्ति सॉ डिवाइस निर्माण और एकीकरण के लिए एक व्यावहारिक प्रोटोकॉल प्रदान करती है।
प्रसिद्ध विलोम पीजोइलेक्ट्रिक प्रभाव पर निर्भर है, जहां परमाणु डिपोल्स एक विद्युत क्षेत्र के अनुप्रयोग के अनुरूप तनाव पैदा करते हैं, पिजोइलेक्ट्रिक क्रिस्टल जैसे लिथियम निओबेट लिएनबो3 (एलएन), लिथियम टैटालाइट लिटाओओ3 (एलटी), का उपयोग माइक्रोस्केल अनुप्रयोगों1,2,,3,,4,,5,6केलिए देखा उत्पन्न करने के लिए इलेक्ट्रोमैकेनिकल ट्रांसड्यूसर के रूप में किया जा सकता है।, 10-1000 मेगाहर्ट्ज पर 1 एनएम तक विस्थापन की पीढ़ी को सक्षम करके, आरी-चालित कंपन पारंपरिक अल्ट्रासाउंड की विशिष्ट बाधाओं पर काबू पा जाता है: छोटे त्वरण, बड़े तरंगदैर्ध्य, और बड़े डिवाइस आकार। तरल पदार्थों और निलंबित कणों में हेरफेर करने के लिए अनुसंधान हाल ही में तेजी आई है, जिसमें बड़ी संख्या में हाल ही में और सुलभ समीक्षा7,,8,,9,,10है।
आरी-एकीकृत माइक्रोफ्लुइडिक उपकरणों के निर्माण के लिए इलेक्ट्रोड के निर्माण की आवश्यकता होती है- सॉ उत्पन्न करने के लिए पीजोइलेक्ट्रिक सब्सट्रेट पर इंटरडिजिटल ट्रांसड्यूसर (आईडीटी) 11। कंघी के आकार की उंगलियां सब्सट्रेट में संपीड़न और तनाव पैदा करती हैं जब एक बारी-बारी से इलेक्ट्रिक इनपुट से जुड़ी होती है। देखा उपकरणों के निर्माण कई प्रकाशनों में प्रस्तुत किया गया है, चाहे धातु धूम या गीला नक़्क़ाशी प्रक्रियाओं के साथ लिफ्ट बंद पराबैंगनी फोटोलिथोग्राफी का उपयोग कर10। हालांकि, इन उपकरणों के निर्माण में ज्ञान और कौशल की कमी कई अनुसंधान समूहों द्वारा acoustofluidics में प्रवेश करने के लिए एक महत्वपूर्ण बाधा है, आज भी । लिफ्ट-ऑफ तकनीक12,13,14,एक विपरीत पैटर्न के साथ एक बलि की परत (फोटोरेसिस्ट) एक सतह पर बनाई जाती है, ताकि जब लक्ष्य सामग्री (धातु) पूरे वेफर पर जमा हो जाए, तो यह वांछित क्षेत्रों में सब्सट्रेट तक पहुंच सके, जिसके बाद शेष फोटोरेसिस्ट को हटाने के लिए “लिफ्ट-ऑफ” कदम हो।,, इसके विपरीत, गीले नक़्क़ाशी प्रक्रिया15,16,17,,18में, धातु को पहले वेफर पर जमा किया जाता है और फिर फोटोरेसिस्ट धातु पर एक प्रत्यक्ष पैटर्न के साथ बनाया जाता है, ताकि वांछित क्षेत्र को धातु नक़्क़ाशी से दूर “नक़्क़ाशी” से बचाया जा सके।,,
एक सबसे अधिक इस्तेमाल डिजाइन में, सीधे IDT, SAW डिवाइस की सुनाई देती आवृत्ति की तरंगदैर्ध्य उंगली जोड़े की आवधिकता से परिभाषित किया गया है, जहां उंगली की चौड़ाई और उंगलियों के बीच की दूरी दोनों /419हैं । विद्युत वर्तमान संचरण दक्षता और सब्सट्रेट पर बड़े पैमाने पर लोडिंग प्रभाव को संतुलित करने के लिए, पीजोइलेक्ट्रिक सामग्री पर जमा धातु की मोटाई20देखा तरंग दैर्ध्य के बारे में 1% होने के लिए अनुकूलित है। ओमिक हान21से स्थानीयकृत हीटिंग, संभावित रूप से समय से पहले उंगली की विफलता को प्रेरित करता है, यदि अपर्याप्त धातु जमा हो जाती है तो हो सकता है। दूसरी ओर, एक अत्यधिक मोटी धातु फिल्म एक बड़े पैमाने पर लोडिंग प्रभाव के कारण IDT की सुनाई देती आवृत्ति में कमी पैदा कर सकती है और संभवतः आईडीटी से गैरइरादतन ध्वनिक गुहाएं बना सकती है, जो ध्वनिक तरंगों को अलग कर सकती है जो वे आसपास के सब्सट्रेट से उत्पन्न करते हैं। नतीजतन, चुने गए फोटोरेसिस्ट और यूवी एक्सपोजर पैरामीटर लिफ्ट-ऑफ तकनीक में भिन्न होते हैं, जो देखा उपकरणों के विभिन्न डिजाइनों, विशेष रूप से आवृत्ति पर निर्भर करता है। यहां, हम विस्तार से लिफ्ट-ऑफ प्रक्रिया का वर्णन करते हैं ताकि एक डबल-तरफा पॉलिश 0.5 मिमी-मोटी 128 डिग्री वाई-घुमाया गया कट एलएन वेफर पर 100 मेगाहर्ट्ज आरई-जेनरेटिंग डिवाइस का उत्पादन किया जा सके, साथ ही समान डिजाइन के 100 मेगाहर्ट्ज डिवाइस को बनाने के लिए गीली नक़्क़ाशी प्रक्रिया भी। हमारा दृष्टिकोण एक माइक्रोफ्लुइडिक प्रणाली प्रदान करता है जो विभिन्न प्रकार की शारीरिक समस्याओं और जैविक अनुप्रयोगों की जांच को सक्षम करता है।
किसी भी विधि से निर्मित देखे गए उपकरण सतह पर उपयोगी यात्रा तरंगों को उत्पन्न करने में सक्षम हैं, और ये विधियां अन्य डिजाइनों का उत्पादन करने के लिए अधिक जटिल प्रक्रियाओं को रेखांकित करती हैं। अनुनाद आ?…
The authors have nothing to disclose.
लेखक कैलिफोर्निया विश्वविद्यालय और इस काम के समर्थन में धन और सुविधाओं के प्रावधान के लिए यूसी सैन डिएगो में NANO3 सुविधा के लिए आभारी हैं । यह काम यूसीएसडी के सैन डिएगो नैनोटेक्नोलॉजी इंफ्रास्ट्रक्चर (एसडीएनआई) में किया गया था, जो राष्ट्रीय नैनो टेक्नोलॉजी समन्वित बुनियादी ढांचे के सदस्य हैं, जिसे राष्ट्रीय विज्ञान फाउंडेशन (ग्रांट ईसीसीएस-1542148) द्वारा समर्थित किया जाता है। यहां प्रस्तुत काम उदारता से डब्ल्यूएम Keck फाउंडेशन से एक अनुसंधान अनुदान द्वारा समर्थित था । लेखक भी नौसेना अनुसंधान के कार्यालय (अनुदान के माध्यम से १२३६८०९८) द्वारा इस काम के समर्थन के लिए आभारी हैं ।
Absorber | Dragon Skin, Smooth-On, Inc., Macungie, PA, USA | Dragon Skin 10 MEDIUM | |
Amplifier | Mini-Circuits, Brooklyn, NY, USA | ZHL–1–2W–S+ | |
Camera | Nikon, Minato, Tokyo, Japan | D5300 | |
Chromium etchant | Transene Company, INC, Danvers, MA, USA | 1020 | |
Developer | Futurrex, NJ, USA | RD6 | |
Developer | EMD Performance Materials Corp., Philidaphia, PA, USA | AZ300MIF | |
Dicing saw | Disco, Tokyo, Japan | Disco Automatic Dicing Saw 3220 | |
Gold etchant | Transene Company, INC, Danvers, MA, USA | Type TFA | |
Hole driller | Dremel, Mount Prospect, Illinois | Model #4000 | 4000 High Performance Variable Speed Rotary |
Inverted microscope | Amscope, Irvine, CA, USA | IN480TC-FL-MF603 | |
Laser Doppler vibrometer (LDV) | Polytec, Waldbronn, Germany | UHF-120 | 4” double-side polished 0.5 mm thick 128°Y-rotated cut lithium niobate |
Lithium niobate substrate | PMOptics, Burlington, MA, USA | PWLN-431232 | |
Mask aligner | Heidelberg Instruments, Heidelberg, Germany | MLA150 | Fabrication process is performed in it. |
Nano3 cleanroom facility | UCSD, La Jolla, CA, USA | ||
Negative photoresist | Futurrex, NJ, USA | NR9-1500PY | |
Oscilloscope | Keysight Technologies, Santa Rosa, CA, USA | InfiniiVision 2000 X-Series | |
Positive photoresist | AZ1512 | Denton Discovery 18 Sputter System | |
Signal generator | NF Corporation, Yokohama, Japan | WF1967 multifunction generator | Wafer Dipper 4" |
Sputter deposition | Denton Vacuum, NJ, USA | Denton 18 | |
Teflon wafer dipper | ShapeMaster, Ogden, IL, USA | SM4WD1 |