Zwei Herstellungstechniken, Lift-off und Nassätzung, werden bei der Herstellung von interdigitalen Elektrodenwandlern auf einem piezoelektrischen Substrat beschrieben, Lithiumniobat, das weit verbreitet ist, um Oberflächen-Akustikwellen zu erzeugen, die jetzt einen breiten Nutzen in der Mikro- bis nanoskaligen Fluidik finden. Die produzierten Elektroden werden gezeigt, um effizient Megahertz-Ordnung Rayleigh Oberflächen-Akustikwellen zu induzieren.
Die Manipulation von Flüssigkeiten und Partikeln durch akustische Betätigung in kleinem Maßstab unterstützt das schnelle Wachstum von Lab-on-a-Chip-Anwendungen. Megahertz-Order-Oberflächen-Akustikwellengeräte (SAW) erzeugen enorme Beschleunigungen auf ihrer Oberfläche, bis zu 108 m/s2, was wiederum für viele der beobachteten Effekte verantwortlich ist, die die Akustofluidik definieren: akustisches Streaming und akustische Strahlungskräfte. Diese Effekte wurden für die Handhabung von Partikeln, Zellen und Flüssigkeiten im Mikromaßstab – und sogar im Nanomaßstab – verwendet. In diesem Beitrag zeigen wir zwei hauptgefertigte Methoden von SAW-Geräten auf Lithiumniobat: Die Details der Abhebe- und Nassätztechniken werden Schritt für Schritt beschrieben. Repräsentative Ergebnisse für das auf dem Substrat abgelagerte Elektrodenmuster sowie die Leistung der auf der Oberfläche erzeugten SAW werden detailliert dargestellt. Fertigungstricks und Fehlerbehebung werden ebenfalls abgedeckt. Dieses Verfahren bietet ein praktisches Protokoll für die Herstellung und Integration von Hochfrequenz-SAW-Geräten für zukünftige Mikrofluidikanwendungen.
Unter Berufung auf den bekannten inversen piezoelektrischen Effekt, bei dem die atomaren Dipole eine Belastung erzeugen, die der Anwendung eines elektrischen Feldes entspricht, können piezoelektrische Kristalle wie Lithiumniobat LiNbO3 (LN), Lithium-Tantalit LiTaO3 (LT) als elektromechanische Messumformer verwendet werden, um SAW für Mikroskalige Anwendungen1,2,3,4,5,6. Durch die Erzeugung von Verschiebungen bis zu 1 nm bei 10-1000 MHz überwindet SAW-getriebene Vibration die typischen Hindernisse des herkömmlichen Ultraschalls: geringe Beschleunigung, große Wellenlängen und große Gerätegröße. Die Forschung zur Manipulation von Flüssigkeiten und Schwebstoffhatik hat sich in letzter Zeit beschleunigt, mit einer großen Anzahl neuerund zugänglicher Bewertungen7,8,9,10.
Die Herstellung von SAW-integrierten mikrofluidischen Geräten erfordert die Herstellung der Elektroden – des interdigitalen Transducers (IDT)11– auf dem piezoelektrischen Substrat, um das SAW zu erzeugen. Die kammförmigen Finger erzeugen Kompression und Spannung im Substrat, wenn sie mit einem abwechselnden elektrischen Eingang verbunden sind. Die Herstellung von SAW-Geräten wurde in vielen Publikationen vorgestellt, ob mit abhebt ultravioletter Photolithographie neben Metallsputations- oder Nassätzverfahren10. Der Mangel an Wissen und Fähigkeiten bei der Herstellung dieser Geräte ist jedoch ein haupthindernis für den Eintritt in die Akustofluidik vieler Forschungsgruppen, auch heute noch. Für die Abhebetechnik12,13,14wird auf einer Oberfläche eine Opferschicht (photoresist) mit einem inversen Muster erstellt, so dass, wenn das Zielmaterial (Metall) auf dem gesamten Wafer abgelagert wird, es das Substrat in den gewünschten Bereichen erreichen kann, gefolgt von einem “Lift-off”-Schritt, um den verbleibenden Photoresist zu entfernen. Im Gegensatz dazu wird das Metall im Nassätzverfahren15,16,17,18zuerst auf dem Wafer abgelagert und dann photoresist mit einem direkten Muster auf dem Metall erzeugt, um den gewünschten Bereich vor dem “Ätzen” durch eine Metalletchant zu schützen.
In einem am häufigsten verwendeten Design, der geraden IDT, wird die Wellenlänge der Resonanzfrequenz des SAW-Geräts durch die Periodizität der Fingerpaare definiert, wobei die Fingerbreite und der Abstand zwischen den Fingern beide /419sind. Um die elektrische Stromübertragungseffizienz und den Massenbelastungseffekt auf dem Substrat auszugleichen, wird die Dicke des auf dem piezoelektrischen Material abgelagerten Metalls auf ca. 1% der SAW-Wellenlänge20optimiert. Lokalisierte Erwärmung durch Ohmsche Verluste21, die möglicherweise einen vorzeitigen Fingerversagen verursachen, kann auftreten, wenn nicht genügend Metall abgelagert wird. Andererseits kann eine zu dicke Metallfolie aufgrund einer Massenbelastung zu einer Verringerung der Resonanzfrequenz des IDT führen und möglicherweise unbeabsichtigte akustische Hohlräume aus den IDTs erzeugen, wodurch die akustischen Wellen, die sie aus dem umgebenden Substrat erzeugen, isoliert werden. Dadurch variieren die gewählten Photoresist- und UV-Belichtungsparameter in der Abhebetechnik, je nach unterschiedlichen Ausführungen von SAW-Geräten, insbesondere der Frequenz. Hier beschreiben wir detailliert den Abhebeprozess zur Herstellung eines 100 MHz SAW-Erzeugungsgeräts auf einem doppelseitig polierten 0,5 mm dicken 128° Y-rotierten GESCHNITTENen LN-Wafer sowie den Nassätzprozess zur Herstellung des 100 MHz-Geräts gleicher Bauart. Unser Ansatz bietet ein mikrofluidisches System, das die Untersuchung einer Vielzahl von physikalischen Problemen und biologischen Anwendungen ermöglicht.
SAW-Geräte, die aus beiden Methoden hergestellt werden, sind in der Lage, nützliche Wanderwellen auf der Oberfläche zu erzeugen, und diese Methoden unterstützen komplexere Prozesse, um andere Designs zu erzeugen. Die Resonanzfrequenz ist in der Regel etwas niedriger als der vorgesehene Wert, aufgrund der Massenbelastungswirkung des oben abgelagerten Metalls. Es gibt jedoch noch einige Punkte, die diskutiert werden sollten, um Probleme zu vermeiden.
Lift-off-Methode
Die …
The authors have nothing to disclose.
Die Autoren danken der University of California und der NANO3-Einrichtung an der UC San Diego für die Bereitstellung von Mitteln und Einrichtungen zur Unterstützung dieser Arbeit. Diese Arbeiten wurden zum Teil an der San Diego Nanotechnology Infrastructure (SDNI) von UCSD durchgeführt, einem Mitglied der National Nanotechnology Coordinated Infrastructure, die von der National Science Foundation (Grant ECCS-1542148) unterstützt wird. Die hier vorgestellte Arbeit wurde großzügig durch ein Forschungsstipendium der W.M. Keck Stiftung unterstützt. Die Autoren sind auch dankbar für die Unterstützung dieser Arbeit durch das Office of Naval Research (über Grant 12368098).
Absorber | Dragon Skin, Smooth-On, Inc., Macungie, PA, USA | Dragon Skin 10 MEDIUM | |
Amplifier | Mini-Circuits, Brooklyn, NY, USA | ZHL–1–2W–S+ | |
Camera | Nikon, Minato, Tokyo, Japan | D5300 | |
Chromium etchant | Transene Company, INC, Danvers, MA, USA | 1020 | |
Developer | Futurrex, NJ, USA | RD6 | |
Developer | EMD Performance Materials Corp., Philidaphia, PA, USA | AZ300MIF | |
Dicing saw | Disco, Tokyo, Japan | Disco Automatic Dicing Saw 3220 | |
Gold etchant | Transene Company, INC, Danvers, MA, USA | Type TFA | |
Hole driller | Dremel, Mount Prospect, Illinois | Model #4000 | 4000 High Performance Variable Speed Rotary |
Inverted microscope | Amscope, Irvine, CA, USA | IN480TC-FL-MF603 | |
Laser Doppler vibrometer (LDV) | Polytec, Waldbronn, Germany | UHF-120 | 4” double-side polished 0.5 mm thick 128°Y-rotated cut lithium niobate |
Lithium niobate substrate | PMOptics, Burlington, MA, USA | PWLN-431232 | |
Mask aligner | Heidelberg Instruments, Heidelberg, Germany | MLA150 | Fabrication process is performed in it. |
Nano3 cleanroom facility | UCSD, La Jolla, CA, USA | ||
Negative photoresist | Futurrex, NJ, USA | NR9-1500PY | |
Oscilloscope | Keysight Technologies, Santa Rosa, CA, USA | InfiniiVision 2000 X-Series | |
Positive photoresist | AZ1512 | Denton Discovery 18 Sputter System | |
Signal generator | NF Corporation, Yokohama, Japan | WF1967 multifunction generator | Wafer Dipper 4" |
Sputter deposition | Denton Vacuum, NJ, USA | Denton 18 | |
Teflon wafer dipper | ShapeMaster, Ogden, IL, USA | SM4WD1 |