Qui è presentata una procedura graduale per la differenziazione in vitro dei cheratinociti primari umani per inibizione del contatto seguita dalla caratterizzazione a livello molecolare mediante analisi RNA-seq.
I cheratinociti primari umani sono spesso usati come modelli in vitro per studi sulla differenziazione epidermica e sulle malattie correlate. Sono stati riportati metodi per la differenziazione in vitro dei cheratinociti coltivati in modo sommerso bidimensionale (2D) utilizzando varie condizioni di induzione. Qui descritta è una procedura per il metodo di differenziazione dei cheratinociti in vitro 2D per inibizione del contatto e successiva caratterizzazione molecolare da parte dell’RNA-seq. In breve, i cheratinociti vengono coltivati in un mezzo cheratinocita definito integrato con fattori di crescita fino a quando non sono completamente confluenti. La differenziazione è indotta da stretti contatti tra i cheratinociti e ulteriormente stimolata escludendo i fattori di crescita nel mezzo. Usando analisi RNA-seq, è dimostrato che entrambi 1) cheratinociti differenziati mostrano firme molecolari distinte durante la differenziazione e 2) il modello di espressione genica dinamica assomiglia in gran parte alle cellule durante la stratificazione epidermica. Per quanto riguarda il confronto con la normale differenziazione dei cheratinociti, i cheratinociti che trasportano mutazioni del fattore di trascrizione p63 mostrano morfologia alterata e firme molecolari, coerenti con i loro difetti di differenziazione. In conclusione, questo protocollo descrive in dettaglio i passaggi per la differenziazione dei cheratinociti in vitro 2D e la sua caratterizzazione molecolare, con particolare attenzione all’analisi bioinformatica dei dati RNA-seq. Poiché l’estrazione dell’RNA e le procedure RNA-seq sono state ben documentate, non è al centro di questo protocollo. La procedura sperimentale di differenziazione dei cheratinociti in vitro e di pipeline di analisi bioinformatica può essere utilizzata per studiare eventi molecolari durante la differenziazione epidermica in cheratinociti sani e materici.
I cheratinociti primari umani derivati dalla pelle umana sono spesso usati come modello cellulare per studiare la biologia dell’epidermide1,2,3,4. La stratificazione dell’epidermide può essere modellata dalla differenziazione dei cheratinociti, sia in modo monostrato sommerso 2D che nel modello organotipico di sollevamento dell’aria 3D2,3,5,6,7. Sebbene i modelli 3D siano diventati sempre più importanti per valutare la struttura e la funzione epidermica, i modelli di differenziazione 2D sono ancora ampiamente utilizzati, a causa della loro convenienza e della possibilità di generare un gran numero di cellule per le analisi.
Varie condizioni sono state applicate per indurre la differenziazione dei cheratinociti in 2D, tra cui l’aggiunta di siero, alta concentrazione di calcio, temperatura più bassa e inibizione dei recettori del fattore di crescita epidermico2,3. Ognuno di questi metodi è stato convalidato da una serie di geni marcatori di differenziazione dei cheratinociti e si è dimostrato efficace nel valutare la differenziazione dei cheratinociti, anche in condizioni patologiche. Tuttavia, queste condizioni di induzione mostrano anche differenze nella loro efficienza di differenziazione e cinetica quando vengono esaminati pannelli specificidi geni marcatori 2,3.
Uno di questi metodi prevede l’inibizione del contatto dei cheratinociti e l’esaurimento dei fattori di crescita nel mezzodi coltura 8. È stato dimostrato che i cheratinociti possono differenziarsi spontaneamente quando le cellule raggiungono la piena densità. Escludere i fattori di crescita nel mezzo di coltura può migliorare ulteriormente la differenziazione. Il metodo che combina l’inibizione del contatto e l’esaurimento dei fattori di crescita ha dimostrato di generare cheratinociti differenziati con modelli di espressione genica simili alla normale epidermide stratificata quando si utilizzano diversi marcatori epidermici3, suggerendo che questo modello è adatto per studiare la normale differenziazione dei cheratinociti. Recentemente, sono state riportate due analisi complete dell’espressione genica della differenziazione dei cheratinocitiutilizzando questo modello 9,10. I ricercatori hanno convalidato questo modello a livello molecolare e hanno dimostrato che può essere utilizzato per studiare la differenziazione dei cheratinociti normale e masabile.
Questo protocollo descrive la procedura per il metodo di differenziazione in vitro e l’analisi molecolare di cellule differenziate utilizzando RNA-seq. Illustra anche la caratterizzazione del trascritoma delle cellule nel giorno di differenziazione 0 (fase di proliferazione), giorno 2, giorno 4 e giorno 7 (differenziazione precoce, media e tardiva, rispettivamente). È dimostrato che i cheratinociti differenziati mostrano schemi di espressione genica che assomigliano in gran parte alle cellule durante la stratificazione epidermica. Per esaminare se questo metodo può essere utilizzato per lo studio della patologia cutanea, abbiamo applicato la stessa pipeline sperimentale e di analisi per indagare i cheratinociti che portano mutazioni del fattore di trascrizione p63 che derivano da pazienti con ectrodattilia, displasia ectodermica e sindrome labbro/palatoschisi (CEE)11,12. Questo protocollo si concentra sulla differenziazione in vitro dei cheratinociti e sulla successiva analisi bioinformatica dell’RNA-seq. Altri passaggi della procedura completa come l’estrazione dell’RNA, la preparazione del campione RNA-seq e la costruzione della biblioteca, sono ben documentati e possono essere facilmente seguiti, specialmente quando si utilizzano molti kit commerciali comunemente usati. Pertanto, questi passaggi sono descritti solo brevemente nel protocollo. I dati mostrano che questa pipeline è adatta per studiare eventi molecolari durante la differenziazione epidermica in cheratinociti sani e materici.
Questo lavoro descrive un metodo per indurre la differenziazione dei cheratinociti umani e la successiva caratterizzazione usando analisi RNA-seq. Nella letteratura attuale, molti studi sulla differenziazione dei cheratinociti umani usano altri due metodi, con un’alta concentrazione di calcio o con siero come metodi per indurre ladifferenziazione 2,3,23. Una relazione precedente ha confrontato attentamente questi tre diversi<sup…
The authors have nothing to disclose.
Questa ricerca è stata sostenuta dall’Organizzazione olandese per la ricerca scientifica (NWO/ALW/MEERVOUD/836.12.010, H.Z.) (NWO/ALW/Open Competition/ALWOP 376, H.Z., J.G.A.S.); Borsa di studio della Radboud University (H.Z.); e sovvenzione del Consiglio delle borse di studio cinesi 201406330059 (J.Q.).
Bioanalyzer 2100 | Agilent | G2929BA | |
Bovine pituitary extract (BPE) | Lonza | Part of the bulletKit | |
CFX96 Real-Time system | Bio-Rad | qPCR machine | |
Dulbecco's Phosphate-Buffered Saline (DPBS) | Sigma-Aldrich | D8537 | |
Epidermal Growth Factor (EGF) | Lonza | Part of the bulletKit | |
Ethanolamine >= 98% | Sigma-Aldrich | E9508 | |
High Sensitivity DNA chips | Agilent | 5067-4626 | |
Hydrocortison | Lonza | Part of the bulletKit | |
Insulin | Lonza | Part of the bulletKit | |
iQ SYBR Green Kit | BioRad | 170-8886 | |
iScript cDNA synthesis | Bio rad | 1708890 | |
KAPA Library Quant Kit | Roche | 07960255001 | Low concentration measure kit |
KAPA RNA HyperPrep Kit with RiboErase | Roche | KK8540 | RNAseq kit |
KGM Gold Keratinocyte Growth Medium BulletKit | Lonza | 192060 | |
Nanodrop | deNovix | DS-11 FX (model) | Nanodrop and Qbit for DNA and RNA measurements |
NEXTflex DNA barcodes -24 | Illumnia | NOVA-514103 | 6 bp long primers |
Penicillin-Streptomycin | Gibco | 15140122 | |
RNA Pico Chip | Agilent | 5067-1513 |