Summary

压缩袜子的制造及其下肢压力特性测量

Published: May 27, 2020
doi:

Summary

本文通过采用直接和间接的方法,对压缩袜子进行制造、结构和压力测量。

Abstract

本文通过直接和间接的方法报告了压缩袜子的压力特性测量。在直接方法中,使用接口传感器测量对下肢的压力值。在间接方法中,测试圆锥体和气缸模型所提及的必要参数以计算压力值。必要的参数涉及过程密度、威尔士密度、周长、长度、厚度、张力和压缩袜子的变形。与直接方法的结果相比,间接方法中的锥体模型更适合计算压力值,因为锥体模型考虑了下肢半径从膝盖到脚踝的变化。基于此测量,进一步研究了制造、结构和压力之间的关系。我们发现毕业是改变威尔士密度的主要影响因素。另一方面,弹性电机直接影响课程密度和丝袜的周长。我们报告的工作提供了制造结构压力关系和逐渐压缩的袜子的设计指南。

Introduction

压缩袜子 (CH) 对下肢造成压力。它可以按下皮肤,并进一步改变静脉半径。因此,当患者穿着压缩袜子时,静脉血流速度会提高。CH和其他压缩服装可以改善下1,2,3,4的静脉循环。治疗性能取决于CH5的压力特性。人们普遍认为,原材料和CH结构对CH压力特性有较大影响。根据一些发表的研究6,CH中的弹性纱线是压力特性的主要原因。例如,Chattopadhyay7通过调整弹性纱线的进料张力,报告了针织圆形拉伸织物的压力特性。此外,Ozbayraktar8还确定弹性烷纱的密度增加,而CH的可扩展性降低。此外,环长9、针织图案9、线性密度的纱线7、10也表现出对压力特性的影响。

提出了一个数值模型来检查CH.拉普拉斯法的压力特性的生成机制,用于预测压力值。托马斯11 号通过将压力、张力和肢体大小相结合,将拉普拉斯法引入压力预测。马克莱夫斯卡12日也报告了类似的工作。为了精确预测织物施加的压力值,他们提出了一个半经验方程,由合适的应力应变方程和Laplace定律组成。此外,梁13 还介绍了杨的模态,以描述CH的拉长。

上述数值研究表明,由于对CH厚度14的无知,实验结果出现了偏差。此外,一些研究人员认为,拉普拉斯定律中涉及的假想圆柱体不适合描述身体四肢,因为从大腿到脚踝的下肢半径不是恒定的,而是逐渐减少。通过结合厚圆柱体理论和拉普拉斯法则,戴尔14和Al Khaburi15,16分别提出了数值模型,以调查CH施加的压力与多层。Sikka17提出了一个新的圆锥体模型,从大腿到脚踝的半径逐渐缩小。

CH固有的压力特性很难定量研究,因为以前研究中的大多数实验性CH通常是商业购买的。图案、纱线、原材料等影响是无法控制的。因此,在这项研究中,实验性CHs是在家里控制制造的。此外,本研究旨在提供两种方法,包括直接方法和间接方法来测量压力特性。在直接方法中,在皮肤和纺织品之间放置一个接口传感器(材料表),以直接测量压力值。另一方面,在间接方法中,首先测量人工下肢上CH样品敷料的张力和一些结构参数。然后,结果被替换到圆锥体模型和气缸模型中以计算压力值。对两种方法获得的压力值进行对比和分析,以找到更合适的模型。所呈现的方法为压缩服装施加的压力的实验测量提供了指导。

Protocol

1. 制造 CH 编程 打开 STAT-Ds 615 MP 丝袜软件,选择 普通织物 以创建新的袜子结构。 按顺序选择以下内容: 双韦尔特1饲料, 转移无模式, 平原医疗腿从双welt 1饲料, 开始脚跟从普通医疗腿, 脚跟和普通医脚的末端, 从普通脚1f开始脚趾, 平原脚趾与罗索和剪辑, 袜…

Representative Results

课程密度逐渐增加,从膝盖到脚踝在 图2a。这是由弹性电机的影响解释的。从膝盖到脚踝,增加的弹性电机逐渐产生从第 5 部分到 CH 制造过程中的第 1 部分的紧张度增加。因此,CH 样本逐渐碎裂,并且在课程方向上每厘米的环数增加。 图2b 中的实验线可分为三组:ABC、DEF、GHI。ABC 集团以最小的毕业价值制造,并获得最高的威尔士密度,而 GHI 组由最?…

Discussion

在这项研究中,我们提供了两种方法来测量CH样品的施加压力,这些方法可用于测量其他服装敷料对皮肤施加的压力。在直接方法中,CH 样本穿在人工下肢上,界面传感器放置在 CH 样本下。压力值可以使用数据收集软件显示在屏幕上。与直接方法相比,我们还提供间接方法。采用了两种涉及气缸模型和锥体模型的理论来计算压力。为了获得压力分布,CH样本通过标记六条均匀间隔的圆线(<strong cla…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者披露了本文研究、作者和/或出版获得以下财政支持:中国国家重点研发计划、2018YFC2000900赠款、中国国家自然科学基金、11802171资助、上海高等院校特聘教授(东方学者)计划、上海工程科学大学人才计划。

Materials

Artificial lower limb Dayuan, Laizhou Electron Instrument Co., Ltd. YG065C Used for measuring the strength of stockings. The employing test standard is ISO 13934-1-2013, metioned this in section 3.3
CH fabrication machine Hongda, Co., Ltd. YG14N Used for measuring the thickness of stockings, the test standard is ISO 5084:1996, metioned this in section 3.2
Elastane yarn MathWorks, Co., Ltd. 2018a Used for calculating the pressure, mentioned this in section 4.
FlexiForce interface pressure sensors Qile, Co., Ltd. Y115B It is composed of magnifying glass with a fixed ruler. Used for counting the loops number per cm in the fabricated CH, metioned this in the sction 3.1.3 and 3.1.7.
FlexiForce measurement software Santoni, Co., Ltd. GOAL 615MP Used for fabricating stockings, metioned this in section 1.2
Ground yarn Santoni, Co., Ltd. It is a kind of coverd yarn which is composed of 80% rubber and 20% viscose, metioned this in section 1.2.1
Matlab software Santoni, Co., Ltd. It is a kind of coverd yarn which is composed of 30% polyamide and 70% cotton, metioned this in section 1.2.1
Mechanical testing instrument and software Santoni, Co., Ltd. GOAL 615MP Used for programing the fabrication parameters, metioned this in section.1.1
Pick glass Shenmei, Inc. F002 A standard artificial femal with 160 cm height. The size was consited with Chinese Standard GB 10000-1988. The artificial femal was made by glass-reinforced plywood and covered by fabric. Mentioned this in section 2.1.
STAT-Ds 615 MP stocking software Tekscan, Inc. A201 Used for measuring the pressure on the skin, metioned this in section 2.2.1
Thickness gauge Weike, Co., Ltd. 1lbs Used for recording the pressure, metioned this in section 2.2.2-2.2.4.

Referenzen

  1. Partsch, H. The static stiffness index: a simple method to assess the elastic property of vcompression material in vivo. Dermatologic Surgery. 31 (6), 625-630 (2010).
  2. Dissemond, J., et al. Compression therapy in patients with venous leg ulcers. Journal der Deutschen Dermatologischen Gesellschaft. 14 (11), 1072-1087 (2016).
  3. Mosti, G., Picerni, P., Partsch, H. Compression stockings with moderate pressure are able to reduce chronic leg oedema. Phlebology. 27 (6), 289-296 (2012).
  4. Rabe, E., Partsch, H., Hafner, J. Therapy with compression stockings in Germany-Results from the Bonn Vein Studies. Journal der Deutschen Dermatologischen Gesellschaft. 11 (3), 257-261 (2013).
  5. Liu, R., Lao, T. T., Kwok, Y. L., Li, Y., Ying, M. T. Effects of graduated compression stockings with different pressure profiles on lower-limb venous structures and haemodynamics. Advances in Therapy. 25 (5), 465 (2008).
  6. Bera, M., Chattopadhyay, R., Gupta, D. Influence of linear density of elastic inlay yarn on pressure generation on human body. Journal of Industrial Textiles. 46 (4), 1053-1066 (2016).
  7. Chattopadhyay, R., Gupta, D., Bera, M. Effect of input tension of inlay yarn on the characteristics of knitted circular stretch fabrics and pressure generation. Journal of Textiles Institute. 103 (6), 636-642 (2012).
  8. Ozbayraktar, N., Kavusturan, Y. The effects of inlay yarn amount and yarn count on extensibility and bursting strength of compression stockings. Tekstil ve Konfeksiyon. 19 (2), 102-107 (2009).
  9. Maleki, H., Aghajani, M., Sadeghi, A. H. On the pressure behavior of tubular weft knitted fabrics constructed from textured polyester yarns. Journal of Engineered Fibers & Fabrics. 6 (2), 30-39 (2011).
  10. Bera, M., Chattopadhyay, R., Gupta, D. Effect of linear density of inlay yarns on structural characteristics of knitted fabric tube and pressure generation on cylinder. Journal of Textiles Institute. 106 (1), 39-46 (2015).
  11. Thomas, S. The use of the Laplace equation in the calculation of sub-bandage pressure. World Wide Wounds. 3 (1), 21-23 (1980).
  12. Maklewska, E., Nawrocki, A., Ledwoń, J. Modelling and designing of knitted products used in compressive therapy. Fibres & Textiles in Eastern Europe. 14 (5), 111-113 (2006).
  13. Leung, W. Y., Yuen, D. W., Shi, S. Q. Pressure prediction model for compression garment design. Journal of Burn Care Research. 31 (5), 716-727 (2010).
  14. Dale, J. J., et al. Multilayer compression: comparison of four different four-layer bandage systems applied to the leg. European Journal of Vascular & Endovascular Surgery. 27 (1), 94-99 (2004).
  15. Al-Khaburi, J., Nelson, E. A., Hutchinson, J., Dehghani-Sanij, A. A. Impact of multilayered compression bandages on sub-bandage pressure: a model. Phlebology. 26 (1), 75-83 (2011).
  16. Al-Khaburi, J., Dehghani-Sanij, A. A., Nelson, E. A., Hutchinson, J. Effect of bandage thickness on interface pressure applied by compression bandages. Medical Engineering & Physics. 34 (3), 378-385 (2012).
  17. Sikka, M. P., Ghosh, S., Mukhopadhyay, A. Mathematical modeling to predict the sub-bandage pressure on a cone limb for multi-layer bandaging. Medical Engineering & Physics. 38 (9), 917-921 (2016).
  18. Zhang, L. L., et al. The structure and pressure characteristics of graduated compression stockings: experimental and numerical study. Textile Research Journal. 89 (23-24), 5218-5225 (2019).

Play Video

Diesen Artikel zitieren
Sun, G., Li, J., Chen, X., Li, Y., Chen, Y., Fang, Q., Xie, H. Fabrication of Compressed Hosiery and Measurement of its Pressure Characteristic Exerted on the Lower Limbs. J. Vis. Exp. (159), e60852, doi:10.3791/60852 (2020).

View Video