Un protocole expérimental détaillé est présenté dans cet article pour l’évaluation de la toxicité neurocomportementale des polluants environnementaux à l’aide d’un modèle de larves de poissons zèbres, y compris le processus d’exposition et les tests pour les indicateurs neurocomportementaux.
Ces dernières années, de plus en plus de polluants environnementaux se sont révélés neurotoxiques, en particulier aux premiers stades de développement des organismes. Les larves de poisson zèbre sont un modèle prééminent pour l’étude neurocomportementale des polluants environnementaux. Ici, un protocole expérimental détaillé est fourni pour l’évaluation de la neurotoxicité des polluants environnementaux à l’aide de larves de poissons zèbres, y compris la collecte des embryons, le processus d’exposition, les indicateurs neurocomportementaux, le processus d’essai, et l’analyse des données. En outre, l’environnement culturel, le processus d’exposition, et les conditions expérimentales sont discutés pour assurer le succès de l’analyse. Le protocole a été utilisé dans le développement de médicaments psychopathes, la recherche sur les polluants neurotoxiques environnementaux, et peut être optimisé pour faire des études correspondantes ou être utile pour les études mécanistes. Le protocole démontre un processus d’opération clair pour l’étude des effets neurocomportementaux sur les larves de poissons zèbres et peut révéler les effets de diverses substances neurotoxiques ou polluants.
Ces dernières années, de plus en plus de polluants environnementaux se sont avérés neurotoxiques1,2,3,4. Cependant, l’évaluation de la neurotoxicité in vivo après l’exposition aux polluants environnementaux n’est pas aussi facile que celle de la perturbation endocrinienne ou de la toxicité du développement. En outre, l’exposition précoce aux polluants, en particulier à des doses respectueuses de l’environnement, a attiré l’attention croissante dans les études de toxicité5,6,7,8.
Le poisson zèbre est établi comme un modèle animal adapté aux études de neurotoxicité au cours du développement précoce après l’exposition aux polluants environnementaux. Les poissons zèbres sont des vertébrés qui se développent plus rapidement que les autres espèces après la fécondation. Les larves n’ont pas besoin d’être nourries parce que les nutriments dans le chorion sont suffisants pour les soutenir pendant 7 jours postfertilisation (dpf)9. Les larves sortent du chorion à 2 dpf et développent des comportements tels que la natation et le virage qui peuvent être observés, suivis, quantifiés et analysés automatiquement à l’aide d’instruments de comportement10,11,12,13 à partir de 3-4 dpf14,15,16,17,18. En outre, des tests à haut débit peuvent également être réalisés par des instruments de comportement. Ainsi, les larves de poissons zèbres sont un modèle exceptionnel pour l’étude neurocomportementale des polluants environnementaux19. Ici, un protocole est offert en utilisant la surveillance à haut débit pour étudier la toxicité neurocomportementale des polluants environnementaux sur les larves de poissons zèbres sous des stimuli légers.
Notre laboratoire a étudié la toxicité neurocomportementale de 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47)20,21, 6′-Hydroxy/Methoxy-2′,4,4′-tetra Éther de diphenyl debromodiphenyl (6-OH/MeO-BDE-47)22,éther de diphenyl deca-brominated (BDE-209), plomb, et paraffines chlorées commerciales23 utilisant le protocole présenté. De nombreux laboratoires utilisent également le protocole pour étudier les effets neurocomportementaux d’autres polluants sur les larves ou les poissons adultes24,25,26,27. Ce protocole neurobehavioral a été employé pour aider à fournir le soutien mécaniste montrant que l’exposition à faible dose au bisphénol A et au bisphénol s de remplacement ont induit la neurogenèse hypothalamique prématurée dans le poisson zèbre embryonnaire27. En outre, certains chercheurs ont optimisé le protocole pour effectuer des études correspondantes. Une étude récente a éliminé la toxicité de la bêta amyloïde (A) dans un modèle facile et à haut débit de poisson zèbre utilisant des nanoparticules d’or enduites de caséine (Cas AuNPs). Il a montré que les AUNPs de Cas dans la circulation systémique se sont translocalisés à travers la barrière hémato-encéphalique des larves de poisson-zèbre et ont séquestré l’A-42 intracérébral, suscitant la toxicité d’une manière non spécifique, de forme de chaperon, qui a été soutenue par la pathologie comportementale28.
La locomotion, l’angle de chemin et l’activité sociale sont trois indicateurs neurocomportementaux utilisés pour étudier les effets de neurotoxicité des larves de poissons zèbres après l’exposition aux polluants dans le protocole présenté. La locomotion est mesurée par la distance de nage des larves et peut être endommagée après l’exposition aux polluants. L’angle de chemin et l’activité sociale sont plus étroitement liés à la fonction du cerveau et du système nerveux central29. L’angle de chemin se réfère à l’angle du chemin de mouvement des animaux par rapport à la direction de natation30. Huit classes d’angle à partir de 180 euros et 180 degrés sont installées dans le système. Pour simplifier la comparaison, six classes dans le résultat final sont définies comme des virages de routine (-10 ‘0 ‘, 0 ’10 ‘), les virages moyens (-10 ‘-90 ‘, ’10 ’90 ‘), et les virages réactifs (-180 ‘-90 ‘, ’90 ” ‘180 ‘) selon nos études précédentes21,22. L’activité sociale à deux poissons est fondamentale du comportement de haut-fond de groupe ; ici, une distance de lt; 0,5 cm entre deux larves valides est définie comme un contact social.
Le protocole présenté ici démontre un processus clair pour étudier les effets neurocomportementaux sur les larves de poissons zèbres et fournit un moyen de révéler les effets de neurotoxicité de diverses substances ou polluants. Le protocole profitera aux chercheurs intéressés à étudier la neurotoxicité des polluants environnementaux.
Ces travaux fournissent un protocole expérimental détaillé pour évaluer la neurotoxicité des polluants environnementaux à l’aide de larves de poissons zèbres. Le poisson zèbre passe par le processus des embryons aux larves pendant la période d’exposition, ce qui signifie qu’un bon soin des embryons et des larves est essentiel. Tout ce qui affecte le développement des embryons et des larves peut influencer le résultat final. Ici, l’environnement culturel, le processus d’exposition et les conditions expérimenta…
The authors have nothing to disclose.
Les auteurs sont reconnaissants pour le soutien financier de la National Natural Science Foundation of China (21876135 et 21876136), du National Major Science and Technology Project of China (2017ZX07502003-03, 2018ZX07701001-22), la Fondation de MOE-Shanghai Le Laboratoire clé de la santé environnementale des enfants (CEH201807-5) et le Conseil suédois de la recherche (no 639-2013-6913).
48-well-microplate | Corning | 3548 | Embyros housing |
6-well-microplate | Corning | 3471 | Embyros housing |
BDE-47 | AccuStandard | 5436-43-1 | Pollutant |
DMSO | Sigma | 67-68-5 | Cosolvent |
Microscope | Olympus | SZX 16 | Observation instrument |
Pipette | Eppendorf | 3120000267 | Transfer solution |
Zebrabox | Viewpoint | ZebraBox | Behavior instrument |
Zebrafish | Shanghai FishBio Co., Ltd. | Tubingen | Zebrafish supplier |
ZebraLab | Viewpoint | ZebraLab | Behavior software |