Wir beschreiben die Anwendung eines extrazellulären Flussanalysators zur Überwachung von Echtzeitveränderungen in der Glykolyse und oxidativen Phosphorylierung während der Mazemazeration der Maus.
Säugetier-Spermien erwerben Befruchtungsfähigkeit im weiblichen Fortpflanzungstrakt in einem Prozess, der als Kapitulation bekannt ist. Capacitation-assoziierte Prozesse benötigen Energie. Es bleibt eine laufende Debatte über die Quellen, die die ATP erzeugen, die Spermien progressive Motilität, Kapitulation, Hyperaktivierung, und Akrosomenreaktion antreibt. Hier beschreiben wir die Anwendung eines extrazellulären Flussanalysators als Werkzeug, um Veränderungen im Energiestoffwechsel während der Maus-Sperma-Kapazität zu analysieren. Mit H+– undO2– empfindlichen Fluorophoren ermöglicht diese Methode die Überwachung der Glykolyse und oxidativen Phosphorylierung in Echtzeit in nicht-kapazitierten oder kapazitiven Spermien. Die Verwendung dieses Assays in Gegenwart verschiedener Energiesubstrate und/oder pharmakologischer Aktivatoren und/oder Inhibitoren kann wichtige Einblicke in den Beitrag verschiedener Stoffwechselwege und den Schnittpunkt zwischen Signalkaskaden und Stoffwechsel während der Spermienkapitulation liefern.
Die Anwendung der Massenspektrometrie hat die Untersuchung des Stoffwechsels revolutioniert. Gezielte metabolische Profilierung und metatobiomische Tracing ermöglichen eine präzise Überwachung von Veränderungen im Energiestoffwechsel. Die erfolgreiche Durchführung der Metabolomik erfordert jedoch umfangreiche Schulungen, erfahrenes Personal und teure, hochempfindliche Massenspektrometer, die nicht für jedes Labor verfügbar sind. In den letzten Jahren ist die Verwendung eines extrazellulären Flussanalysators, wie z. B. des Seahorse XFe96, als Ersatzmethode zur Messung von Veränderungen im Energiestoffwechsel in verschiedenen Zelltypen1,2,3,4,5populär geworden.
Spermien sind hochspezialisierte motile Zellen; deren Aufgabe es ist, das väterliche Genom an die Oozyte zu liefern. Sperma verlassen den männlichen Fortpflanzungstrakt nach der Ejakulation sind noch funktionell unreif und können die Eizelle nicht befruchten, weil sie nicht in der Lage sind, die Gewänder der Eizellen zu durchdringen. Spermien erwerben Befruchtungskompetenz, wenn sie durch den weiblichen Fortpflanzungstrakt in einem Reifungsprozess, bekannt als Capacitation6,7,transportiert werden. Frisch ejakulierte Spermien oder Spermien, die aus der Cauda epididymis seziert werden, können in vitro durch Inkubation in definierten Kapazitationsmedien, die Ca2+, Bicarbonat (HCO3–) oder einen zelldurchlässigen cAMP analog (z. B. Dibutyryl-cAMP), ein Cholesterin-Akzeptor (z. B. Rinderserumalbumin, BSA) und eine Energiequelle (z. B. Glukose). Während der Kapitulation modifizieren Spermien ihr Motilitätsmuster in einen asymmetrischen Flagellar-Beat, der einen Schwimmmodus namens Hyperaktivierung8,9darstellt, und sie werden kompetent, um die Akrosomenreaktion7zu durchlaufen, wo proteolytische Enzyme freigesetzt werden, die die Gewänder der Eizellen verdauen. Diese Prozesse erfordern Energie, und ähnlich wie somatische Zellen, Spermien erzeugen ATP und andere hochenergetische Verbindungen über Glykolyse sowie mitochondrialen TCA-Zyklus und oxidative Phosphorylierung (Oxphos)10. Während mehrere Studien zeigen, dass Glykolyse notwendig und ausreichend ist, um die Spermien-Kapazität11,12,13,14zu unterstützen, ist der Beitrag von Oxphos weniger klar. Im Gegensatz zu anderen Zelltypen, bei denen die Glykolyse physikalisch an den TCA-Zyklus gekoppelt ist, sind Spermien stark kompartimisiert und sollen diese Prozesse in separaten Flagellarkomden aufrechterhalten: Das Mittelstück konzentriert die mitochondriale Maschinerie, während die Schlüsselenzyme der Glykolyse auf das Hauptstück15,16beschränkt zu sein scheinen. Diese Abschottung führt zu einer anhaltenden Debatte darüber, ob Pyruvat, das im Hauptstück durch Glykolyse produziert wird, mitochondriale Oxphos im Mittelstück unterstützen kann und ob ATP, die von Oxophs im Mittelstück produziert wird, in der Lage wäre, ausreichend schnell entlang der Länge des Flagellums zu diffundieren, um den Energiebedarf in distalen Teilen des Hauptteils17,18,19zu unterstützen. Es gibt auch Unterstützung einer Rolle für Oxphos in Spermien-Capacitation. Oxphos ist nicht nur energetisch günstiger als Glykolyse, erzeugt 16-mal mehr ATP als Glykolyse, sondern Mittelstückvolumen und mitochondrialer Gehalt sind direkt mit der Reproduktivfitness bei Säugetierarten korreliert, die einen größeren Grad des Wettbewerbs zwischen Männchen fürKumpels zeigen 20. Um diese Fragen zu beantworten, sind Methoden zur Untersuchung der relativen Beiträge von Glykolyse und Oxphos während der Spermien-Kapazität erforderlich.
Tourmente et al. wandten einen 24-Well extrazellulären Flussanalysator an, um den Energiestoffwechsel eng verwandter Mausarten mit signifikant unterschiedlichen Spermienleistungsparametern zu vergleichen21. Anstatt die basalen ECAR- und OCR-Werte von nicht kapazitierten Spermien zu melden, passen wir hier ihre Methode mit einem 96-Well extrazellulären Flussanalysator an, um Veränderungen des Energiestoffwechsels während der Flüchtigkeit der Maus in Echtzeit zu überwachen. Wir haben eine Methode entwickelt, die es ermöglicht, Glykolyse und Oxphos in Echtzeit in Spermien mit schlagenden Flagella in bis zu zwölf verschiedenen Versuchsbedingungen zu überwachen, indem der Fluss von Sauerstoff(O2) und Protonen (H+) gemessen wird (Abbildung 1A). Durch den Abbau von Pyruvat zu Laktat während der Glykolyse und die Produktion vonCO2 über den TCA-Zyklus extrudieren nicht-kapazitierte und kapazitierte Spermien H+ in die Assaymedien, die vom extrazellulären Flussanalysator über H+-empfindliche Fluorophore zur Sondenspitze einer Sensorpatrone immobilisiert werden. Parallel dazu wird derO2-Verbrauch durch oxidative Phosphorylierung überO2-empfindlicheFluorophore immobilisiert, die zur gleichen Sondenspitze immobilisiert sind (Abbildung 1B). Der effektive Nachweis des freigesetzten H+ und verbrauchten O2 erfordert einen modifizierten Spermienpuffer mit geringer Pufferkapazität ohne Bicarbonat oder Phenolrot. Um also in Abwesenheit von Bicarbonat eine Kapacitation zu induzieren, haben wir die Verwendung eines zelldurchlässigen cAMP-Analogos übernommen, das zusammen mit dem Breitbereichs-PDE-Hemmer IBMX22injiziert wurde. Drei zusätzliche unabhängige Injektionsöffnungen ermöglichen die Injektion von pharmakologischen Aktivatoren und/oder Inhibitoren, was die Echtzeitdetektion von Veränderungen der zellulären Atmung und Glykolyserate aufgrund experimenteller Manipulation enciert.
Der Verlust der Spermienkapazität in Ermangelung bestimmter metabolischer Substrate oder kritischer Stoffwechselenzyme ergab den Energiestoffwechsel als Schlüsselfaktor für eine erfolgreiche Befruchtung. Ein metabolischer Schalter während der Zellaktivierung ist ein etabliertes Konzept in anderen Zelltypen, aber wir beginnen gerade zu verstehen, wie Spermien ihren Stoffwechsel an den steigenden Energiebedarf während der Kapitulation anpassen. Mit einem extrazellulären Flussanalysator haben wir ein leicht anwendbare…
The authors have nothing to disclose.
Die Autoren möchten die Unterstützung von Dr. Lavoisier Ramos-Espiritu am Rockefeller High Throughput and Spectroscopy Resource Center würdigen.
Reagents | |||
2-Deoxy-D-glucose | Sigma-Aldrich | D8375 | 2-DG |
3-Isobutyl-1-methylxanthine | Sigma-Aldrich | I7018 | IBMX; prepare a 500 mM stock solution in DMSO (111.1 mg/ml) and store in small aliquots |
Antimycin A | Sigma-Aldrich | A8674 | AntA; prepare a 5 mM stock solution in DMSO (2.7 mg/ml) and store in small aliquots |
Bovine serum albumin | Sigma-Aldrich | A1470 | BSA |
Calcium chloride | Sigma-Aldrich | C1016 | CaCl2 |
Concanacalin A, Lectin from Arachis hypogaea (peanut) | Sigma-Aldrich | L7381 | ConA |
Glucose | Sigma-Aldrich | G7528 | |
Hepes | Sigma-Aldrich | H0887 | |
Isothesia | Henry Schein Animal Health | 1169567761 | Isoflurane |
Magnesium sulfate | Sigma-Aldrich | M2643 | MgSO4 |
N6,2'-O-Dibutyryladenosine 3',5'-cyclic monophosphate sodium salt | Sigma-Aldrich | D0627 | db-cAMP |
Potassium chloride | Sigma-Aldrich | P9333 | KCl |
Potassium dihydrogen phosphate | Sigma-Aldrich | P5655 | KH2PO4 |
Rotenone | Cayman Chemical Company | 13995 | Rot; prepare a 5 mM stock solution in DMSO (2mg/ml) and store in small aliquots |
Sodium bicarbonate | Sigma-Aldrich | S5761 | NaHCO3- |
Sodium chloride | Sigma-Aldrich | S9888 | NaCl |
Equipment and materials | |||
12 channel pipette 10-100 μL | eppendorf | ES-12-100 | |
12 channel pipette 50-300 μL | vwr | 613-5257 | |
37 °C, non-CO2 incubator | vwr | 1545 | |
5 mL cetrifuge tubes | eppendorf | 30119380 | |
50 mL conical centrifuge tubes | vwr | 76211-286 | |
Centrifuge with plate adapter | Thermo Scientific | IEC FL40R | |
Dissection kit | World Precision Instruments | MOUSEKIT | |
Inverted phase contrast microscope with 40X objective | Nikon | ||
OctaPool Solution Reservoirs, 25 ml, divided | Thomas Scientific | 1159X93 | |
OctaPool Solution Reservoirs, 25 mL, divided | Thomas Scientific | 1159X95 | |
Seahorse XFe96 Analyzer | Agilent | ||
Seahorse XFe96 FluxPak | Agilent | 102416-100 | Also sold as XFe96 FluxPak mini (102601-100) with 6 instead of 18 cartidges. |