Antibióticos fluorescentes são ferramentas poderosas que podem ser usadas para estudar múltiplos aspectos da resistência antimicrobiana. Este artigo descreve a preparação de antibióticos fluorescentes e sua aplicação para estudar a resistência a antibióticos em bactérias. As sondas podem ser usadas para estudar mecanismos de resistência bacteriana (por exemplo, efflux) por espectrofotometria, citometria de fluxo e microscopia.
Antibióticos fluorescentes são ferramentas de pesquisa multiuso que são prontamente utilizadas para o estudo da resistência antimicrobiana, devido à sua vantagem significativa sobre outros métodos. Para preparar essas sondas, os derivados azidas de antibióticos são sintetizados, em seguida, juntamente com alquine-fluoroforres usando azide-alkyne dipolar cicloaddition por química click. Após a purificação, a atividade antibiótica do antibiótico fluorescente é testada por avaliação mínima de concentração inibitória. Para estudar o acúmulo bacteriano, pode ser utilizada espectrofometria ou citometria de fluxo, permitindo uma análise muito mais simples do que os métodos que dependem de derivados radioativos de antibióticos. Além disso, a microscopia confocal pode ser usada para examinar a localização dentro da bactéria, com informações valiosas sobre o modo de ação e mudanças que ocorrem em espécies resistentes. O uso de sondas fluorescentes de antibióticos no estudo da resistência antimicrobiana é um método poderoso com muito potencial para expansão futura.
A resistência antimicrobiana (RMM) é uma crise crescente que representa uma grande ameaça à saúde humana em todo o mundo. A resistência à maioria dos antibióticos foi relatada, e infecções causadas por bactérias resistentes a todos os medicamentos clinicamente disponíveis estão surgindo. Para combater a ascensão da RMA, precisamos aumentar nossa compreensão deste fenômeno multifacetado e dos mecanismos e interações subjacentes entre antibióticos e bactérias. Um aspecto historicamente mal compreendido é a permeação de antibióticos em bactérias, juntamente com os fenômenos do acúmulo e da efflux. Esse conhecimento é crucial na concepção de novas drogas e na compreensão de mecanismos de resistência. Assim, isso desempenha um papel crítico na pesquisa da RMM.
Existem duas abordagens principais que podem ser tomadas para medir a concentração de antibióticos: medir a droga diretamente ou marcar com um moiety projetado para facilitar a quantificação. Embora a marcação do antibiótico melhore a detecção, isso pode perturbar a atividade biológica da droga, como atividade antimicrobiana e permeabilidade. Este não é um problema para métodos não marcados; no entanto, a detecção pode ser desafiadora. Nos últimos anos, os avanços tecnológicos levaram a um boom de pesquisas utilizando espectrometria de massa (MS) para medir diretamente a concentração de antibióticos em bactérias1,2,3,4,5,6,7. Esses estudos mostraram que é possível estudar o acúmulo intracelular em uma variedade de bactérias, com bactérias gram-negativas as mais estudadas. A quantificação da permeabilidade das moléculas tem sido então ligada à atividade e usada para informar o desenvolvimento de medicamentos2,3,4, embora seja preciso ter cautela ao confundir diretamente o acúmulo e a atividade-alvo5. Antes do desenvolvimento de EsM, os únicos antibióticos cuja concentração poderia ser diretamente medida foram aqueles que possuem fluorescência intrínseca, como tetraciclina e as quinolones8,9,10,11. Embora obviamente limitado em escopo, acúmulo e efflux foram examinados e quantificados, ilustrando a utilidade da quantificação baseada em fluorescência.
Antibióticos marcados têm sido usados por muitas décadas para estudar distribuições, modos de ação e resistência, com tags radioativas e fluorescentes sendo comuns. Sondas marcadas por rádio têm a vantagem de serem quase idênticas ao composto pai, portanto, é improvável que a atividade biológica seja significativamente diferente. Isótopos como 3H, 14C e 15N têm sido frequentemente usados devido à proeminência desses elementos em antibióticos, e uma variedade de andaimes antibióticos foram examinados1,10,12,13. Embora a detecção de radiosondas seja simples, há uma série de preocupações logísticas (por exemplo, segurança, isótopos de meia-vida) que limitaram o uso dessa abordagem. Outra estratégia são antibióticos fluorescentes. Essas sondas podem ser usadas para examinar a distribuição e os modos de ação e resistência da droga-mãe, usando tecnologia mais simples do que a Ems e sem os problemas logísticos da radiação8. A principal desvantagem para essa abordagem é que os antibióticos são geralmente moléculas relativamente pequenas, daí a introdução de um moiety fluorescente representa uma mudança química significativa. Essa alteração pode impactar propriedades fisioquímicas e atividade antibacteriana. Portanto, deve-se ter cuidado para avaliar esses fatores para gerar resultados representativos do antibiótico pai.
Neste trabalho, um método é descrito para sintetizar, avaliar e usar antibióticos fluorescentes, como em nossas publicações anteriores14,15,16. Através de trabalhos anteriores, vários antibióticos fluorescentes foram preparados e usados para uma variedade de propósitos (ver Stone et al.8). Para minimizar a probabilidade de impactar a atividade biológica, fluoroforres muito pequenos são utilizados neste trabalho: nitrobenzoxadiazol (NBD, verde) e 7-(dimetilamino)-2-oxo-2H-cromado-4-yl (DMACA, azul). Além disso, é descrita a avaliação da atividade antibacteriana utilizando o ensaio de concentração mínima de inibição de diluição de microbroche (MIC), para que o efeito das modificações na atividade possa ser medido. Essas sondas fluorescentes podem ser usadas em ensaios espectrofotométricos, citometria de fluxo e microscopia. A gama de aplicações possíveis é onde reside a vantagem dos antibióticos fluorescentes. O acúmulo de celular pode ser quantificado, categorizado e visualizado, algo que não é possível usando apenas esm. Espera-se que o conhecimento adquirido através do uso de antibióticos fluorescentes ajude na nossa compreensão da resistência e na luta contra a RM.
A criação de uma sonda de antibióticos fluorescentes bem sucedida deve começar com um planejamento cuidadoso e consideração do SAR da droga-mãe. Se o SAR não for conhecido ou totalmente explorado, várias opções podem precisar ser testadas para encontrar um site que possa ser seletivamente modificado sem abolir a atividade biológica. Uma vez identificado um local/s, a instalação de um moiety de linker é muitas vezes essencial para fornecer espaçamento estérico entre o local biológico de ação e o fluorofóbico inativo. Deve-se tomar cuidado para que a reação usada para anexar o linker ao antibiótico deixe um grupo funcional bioestável, evitando, por exemplo, esters suscetíveis ao decote por esterases in vivo. Dependendo do perfil farmacodinâmico e farmacocinético do antibiótico, um simples linker alkyl pode ser usado, ou então uma opção menos lipofílica, como um linker de polietileno glicol (PEG) deve ser considerado. Com o linker ligado, a atividade antibacteriana deve ser avaliada para garantir que os MICs contra bactérias relevantes sejam semelhantes ao composto pai.
Neste trabalho, recomendamos o uso de Huigsen azide-alkyne [3+2] cicloaddition dipolar (clique em química, ver Figura 1) para ligar o fluoroforor ao antibiótico, por uma série de razões. As reações de cliquesão são altamente seletivas, o que significa que a proteção de grupos reativos no antibiótico não é necessária, e além disso, a reação deixa um moiety de triazole estável e biocompatível. O componente azide é introduzido na porção de antibióticos em nossos procedimentos, pois isso é geralmente mais facilmente realizado com uma variedade de tipos estruturais do que a introdução de um alquino. As sintetas de dois fluoroforos alquinos derivados são descritas aqui, embora outras possam ser exploradas se desejadas. NbD e DMACA foram escolhidos devido ao seu pequeno tamanho, minimizando a possibilidade de interferir na penetração celular e na interação com o alvo. A reação do clique em si é realizada utilizando catalisise de cobre, onde tanto2+ (CuSO4, com um agente redutor de ácido ascórbico) ou+ (CuI) pode ser usado como reagente inicial. Após a purificação (Figura 2),os MICs devem então ser testados como com o azide. Mesmo com cuidadosa consideração da escolha fluorofórfo e local de apego, é possível que a má atividade com antibióticos seja observada. Isso não significa, no entanto, que uma sonda inativa não é usada. Como mostrado com as sondas TMP, compostos com má atividade antibacteriana ainda podem se ligar ao mesmo alvo que a droga-mãe. Isso pode permitir estudos sobre o modo de ação e exame de fenômenos que levam à resistência, como a efflux.
Conforme descrito na seção de protocolos, é possível analisar a rotulagem bacteriana pelos antibióticos fluorescentes usando um simples ensaio de espectrofofotometria(Figura 3) ou citometria de fluxo(Figura 4). Ambos os métodos são capazes de quantificar o acúmulo de celular, e ao lising células e examinar a localização da fluorescência em lisato, é possível avaliar o acúmulo intracelular. Neste protocolo, o uso de lisozyme para lise celular é descrito, pois esta é uma técnica rápida e universal. Outras condições de lise, como o tratamento noturno com glicina-HCl7,também foram utilizadas com sucesso. Utilizando essa técnica, é possível estudar o impacto da efflux no acúmulo de antibióticos, que é um grande mecanismo de resistência. Se a efflux estiver realmente presente nas bactérias, será observada a falta de acúmulo intracelular, embora isso possa ser resgatado usando um inibidor de efflux como cccp.
A microscopia também pode ser realizada para inspecionar visualmente a localização de sondas em diferentes bactérias, obtendo informações sobre o modo de ação e potencialmente também resistência (ver Figura 5 para exemplos representativos). Para ver a localização dentro das bactérias, é necessário um microscópio confocal de alta resolução, equipado com recursos como SIM (microscopia de iluminação estruturada), SR-SIM (superresolução-SIM), Airyscan ou STED (esgotamento estimulado por emissões). Além disso, devem ser utilizados deslizamentos de cobertura de alto desempenho e análises pós-imagem realizadas em um software apropriado (por exemplo, FIJI, Zen ou Imaris). A localização das sondas é comparada a corantes que mancham arquiteturas específicas, como Hoechst-33342 (ácido azul, nucleico), Syto-9 (ácido verde, nucleico) e FM4-64FX (vermelho, membrana). A escolha dos corantes deve ser feita para combinar com o antibiótico fluorescente, de modo que cada cor usada tenha sobreposição espectral mínima. Para obter as melhores imagens possíveis, a otimização pode ser necessária. Por exemplo, se as bactérias estão muito lotadas no escorregador, tome apenas parte da pelota suspensa, em seguida, diluir com mais meio de montagem. Em contraste, se as bactérias são muito esparsas no slide, basta começar com mais bactérias. Neste protocolo, recomenda-se o uso de um gel termoreversível compatível com células vivas (por exemplo, Cygel) para imagens de células vivas, pois imobiliza bactérias (incluindo bactérias motile), mas outros meios de montagem ou agarose também foram usados com sucesso.
No geral, apesar dos desafios que podem ser enfrentados na preparação de um antibiótico fluorescente biologicamente ativo, a simplicidade de seu uso e sua versatilidade tornam essas sondas ferramentas atraentes para pesquisa na AMR. O trabalho futuro usando antibióticos fluorescentes tem o potencial de fornecer uma visão dos mecanismos de resistência a antibióticos, melhorar nossa compreensão de como os antibióticos atuais operam e ajudar no desenvolvimento de melhores medicamentos.
The authors have nothing to disclose.
A MRLS é apoiada por um Prêmio Australiano de Pós-Graduação (APA) e um Prêmio de Avanço em Pesquisa em Biociências Moleculares. Wanida Phetsang foi apoiada pela UQ International Scholarship (UQI) e iMB Postgraduate Award (IMBPA). Mac é pesquisador principal da NHMRC (APP1059354) e também possui uma consulta de pesquisador estrito na Universidade de Queensland, com seu tempo restante como CEO da Inflazome Ltd, uma empresa que desenvolve medicamentos para atender às necessidades clínicas não atendidas em doenças inflamatórias. O MATB é apoiado em parte pela Wellcome Trust Strategic Grant WT1104797/Z/14/Z e pelo SUBSÍDIO de Desenvolvimento NHMRC APP1113719. A microscopia foi realizada na Australian Cancer Research Foundation (ACRF)/Institute for Molecular Bioscience Cancer Biology Imaging Facility, que foi estabelecida com o apoio da ACRF.
3-(dimethylamino)phenol | Alfa-Aesar | B23067 | |
4-chloro-7-nitro-benzofuran | Sigma-Aldrich | 163260-5G | |
Amicon Ultra-0.5 centrifugal filter unit with Ultracel- 10 membrane | Merck | UFC501096 | |
Atlantis Prep T3 OBD (100 A, 5 uM, 10×250 mm) | Waters | 186008205 | |
Atlantis T3 column (100 A, 5 uM, 2.1 × 50 mm) | Waters | 186003734 | |
Bruker Avance 600 MHz spectrometer | Bruker | ||
Buchi Reveleris C18 12g Cartridge | Buchi | BUC145152103 | |
CCCP | Sigma-Aldrich | C2759 | |
Celite 545 | Sigma-Aldrich | 22140-5KG-F | |
Cygel | ABCAM | Ab109204 | |
Elyra PS,1 SIM/STORM confocal microscope | Zeiss | ||
FM4-64FX, fixable analog of FM™ 4-64 membrane stain | Life Technologies Australia Pt | F34653 | |
Gallios flow cytometer | Beckman Coulter | ||
Gamma 2-16 LSCplus lyophilise | CHRIST | ||
Gilson HPLC 2020 | Gilson | ||
Hanks' Balanced Salt solution, Modified, with sodium bicarbonate, without phenol red, calcium chloride and magnesium sulfate, liquid, sterile-filtered, suitable for cell culture | Sigma-Aldrich | H6648-500ML | |
Hettich Zentrifugen Rotofix 32 | Hettich | ||
High performance #1.5 cover slips (18 x 18 mm) | Schott/Zeiss | 474030-9000-000 | |
Hoechst 33342, Trihydrochloride, Trihydrate – Fluo | Life Technologies Australia Pt | H21492 | |
LB | AMRESCO | J106 | |
Leica STED 3X Super Resolution Microscope with White Light Laser excitation | Leica | ||
Lysozyme from chicken egg white lyophilized powder |
Sigma-Aldrich | L6876 | |
Mueller Hinton II Broth Cation adjusted | Becton Dickinson | 212322 | |
Propargylamine | Sigma-Aldrich | P50900-5G | |
Reveleris GRACE MPLC | Buchi | ||
Shimadzu LCMS-2020 | Shimadzu | ||
Sigma 1-15 Microcentrifuge | Sigma-Aldrich | ||
Silica gel 60 (0.040-0.063 mm) for column chromatography (230-400 mesh ASTM) | Merck | 1093859025 | |
SYTO 9 Green Fluorescent Nucleic Acid Stain | Life Technologies Australia Pt | S34854 | |
TECAN Infinite M1000 PRO | TECAN |