Fluoreszierend getaggte Antibiotika sind leistungsstarke Werkzeuge, die verwendet werden können, um mehrere Aspekte der antibiotika-resistenz zu untersuchen. Dieser Artikel beschreibt die Herstellung von fluoreszierend markierten Antibiotika und ihre Anwendung auf die Untersuchung von Antibiotikaresistenzen bei Bakterien. Sonden können verwendet werden, um Mechanismen der bakteriellen Resistenz (z. B. Efflux) durch Spektrophotometrie, Durchflusszytometrie und Mikroskopie zu untersuchen.
Fluoreszierende Antibiotika sind Mehrzweck-Forschungswerkzeuge, die aufgrund ihres signifikanten Vorteils gegenüber anderen Methoden leicht für die Untersuchung antimikrobieller Resistenzen verwendet werden können. Zur Vorbereitung dieser Sonden werden Azidderivate von Antibiotika synthetisiert und dann mit Alkyn-Fluorophoren gekoppelt, die Azid-Alkyne-Dipolarzyklionaddition durch Klickchemie verwenden. Nach der Reinigung wird die antibiotische Aktivität des fluoreszierenden Antibiotikums durch minimale hemmende Konzentrationsbewertung getestet. Um die bakterielle Akkumulation zu untersuchen, kann entweder Spektrophotometrie oder Durchflusszytometrie verwendet werden, was eine viel einfachere Analyse als Methoden ermöglicht, die sich auf radioaktive Antibiotikaderivate stützen. Darüber hinaus kann die konfokale Mikroskopie verwendet werden, um die Lokalisation innerhalb der Bakterien zu untersuchen und wertvolle Informationen über die Wirkungsweise und Veränderungen bei resistenten Arten zu liefern. Der Einsatz von fluoreszierenden Antibiotika-Sonden bei der Untersuchung der antibiotika-resistenz ist eine leistungsfähige Methode mit viel Potenzial für zukünftige Expansion.
Antimikrobielle Resistenz (AMR) ist eine zunehmende Krise, die eine große Bedrohung für die menschliche Gesundheit auf der ganzen Welt darstellt. Resistenz gegen die meisten Antibiotika wurde berichtet, und Infektionen durch Bakterien, die gegen alle klinisch verfügbaren Medikamente resistent sind, entstehen. Um den Anstieg der Antibiotikaresistenz zu bekämpfen, müssen wir unser Verständnis dieses vielschichtigen Phänomens und der zugrunde liegenden Mechanismen und Wechselwirkungen zwischen Antibiotika und Bakterien erweitern. Ein Aspekt, der historisch wenig verstanden wurde, ist die Durchlässigung von Antibiotika in Bakterien, zusammen mit den Phänomenen der Akkumulation und des Efflux. Dieses Wissen ist entscheidend für die Entwicklung neuer Medikamente und das Verständnis von Mechanismen der Resistenz. Daher spielt dies eine entscheidende Rolle in der AMR-Forschung.
Es gibt zwei Hauptansätze, die ergriffen werden können, um die Antibiotikakonzentration zu messen: die Messung des Arzneimittels direkt oder die Kennzeichnung mit einem Moiety, das die Quantifizierung erleichtern soll. Obwohl die Kennzeichnung des Antibiotikums den Nachweis verbessert, kann dies die biologische Aktivität des Arzneimittels stören, wie antimikrobielle Aktivität und Durchlässigkeit. Dies ist kein Problem für nicht markierte Methoden; Die Erkennung kann jedoch eine Herausforderung darstellen. In den letzten Jahren haben technologische Fortschritte zu einem Boom in der Forschung geführt, die Massenspektrometrie (MS) verwendet, um die Antibiotikakonzentration in Bakterien direkt zu messen1,2,3,4,5,6,7. Diese Studien haben gezeigt, dass es möglich ist, intrazelluläre Akkumulation in einer Vielzahl von Bakterien zu studieren, mit gramnegativen Bakterien die am häufigsten untersucht. Die Quantifizierung der Moleküldurchlässigkeit wurde dann mit der Aktivität in Verbindung gebracht und zur Information über die Arzneimittelentwicklung2,3,4, obwohl Vorsicht geboten ist, wenn die Akkumulation und die Zielaktivität direkt vermischt werden5. Vor der MS-Entwicklung waren die einzigen Antibiotika, deren Konzentration direkt gemessen werden konnte, diejenigen, die eine intrinsische Fluoreszenz besaßen, wie Tetracyclin und die Chinolone8,9,10,11. Obwohl der Umfang offensichtlich begrenzt war, wurden Akkumulation und Efflux untersucht und quantifiziert, was die Nützlichkeit der fluoreszenzbasierten Quantifizierung veranschaulicht.
Tagged Antibiotika werden seit vielen Jahrzehnten verwendet, um Verteilungen, Wirkarten und Resistenzen zu untersuchen, wobei radioaktive und fluoreszierende Tags häufig sind. Radio-markierte Sonden haben den Vorteil, dass sie fast identisch mit der Übergeordneten Verbindung sind, daher ist es unwahrscheinlich, dass die biologische Aktivität signifikant unterschiedlich ist. Isotope wie 3H, 14C und 15N wurden häufig aufgrund der Prominenz dieser Elemente in Antibiotika verwendet, und eine Vielzahl von Antibiotikagerüsten wurden untersucht1,10,12,13. Während die Detektion von Funksonden einfach ist, gibt es eine Reihe von logistischen Bedenken (z. B. Sicherheit, Isotop-Halbwertszeit), die die Verwendung dieses Ansatzes eingeschränkt haben. Eine weitere Strategie sind fluoreszierend markierte Antibiotika. Diese Sonden können verwendet werden, um die Verteilung und die Wirkarten und die Widerstandsfähigkeit des Muttermedikaments zu untersuchen, mit einfacherer Technologie als MS und ohne die logistischen Probleme der Strahlung8. Der Hauptnachteil dieses Ansatzes ist, dass Antibiotika im Allgemeinen relativ kleine Moleküle sind, daher stellt die Einführung eines fluoreszierenden Moleküls eine signifikante chemische Veränderung dar. Diese Veränderung kann sich auf physiochemische Eigenschaften und antibakterielle Aktivität auswirken. Daher ist darauf zu achten, diese Faktoren zu bewerten, um Ergebnisse zu generieren, die für das Mutterantibiotikum repräsentativ sind.
In dieser Arbeit wird eine Methode zur Synthese, Bewertung und Verwendung fluoreszierender Antibiotika beschrieben, wie in unseren früheren Veröffentlichungen14,15,16. Durch frühere Arbeiten wurden eine Reihe von fluoreszierenden Antibiotika hergestellt und für eine Vielzahl von Zwecken verwendet (siehe Stone et al.8). Um die Wahrscheinlichkeit einer Auswirkungen auf die biologische Aktivität zu minimieren, werden bei dieser Arbeit sehr kleine Fluorophore verwendet: Nitrobenzoxadiazol(NBD, grün) und 7-(dimethylamino)-2-oxo-2 H-chromen-4-yl (DMACA, blau). Weiterhin wird die Beurteilung der antibakteriellen Aktivität mit dem Mikrobakenverdünnungs-Mindestinhibitionskonzentrationstest (MIC) beschrieben, so dass die Wirkung von Veränderungen auf die Aktivität gemessen werden kann. Diese fluoreszierend markierten Sonden können in spektrophotometrischen Assays, Durchflusszytometrie und Mikroskopie eingesetzt werden. Die Bandbreite der Einsatzmöglichkeiten liegt dort, wo der Vorteil fluoreszierender Antibiotika liegt. Die zelluläre Akkumulation kann quantifiziert, kategorisiert und visualisiert werden, was mit MS allein nicht möglich ist. Es ist zu hoffen, dass die durch den Einsatz von fluoreszierenden Antibiotika gewonnenen Erkenntnisse zu unserem Verständnis von Resistenzen und zur Bekämpfung von Antibiotika beidere werden.
Die Schaffung einer erfolgreichen fluoreszierenden Antibiotikasonde muss mit einer sorgfältigen Planung und Prüfung der SAR des Muttermedikaments beginnen. Wenn die SAR nicht bekannt oder vollständig erforscht ist, müssen möglicherweise mehrere Optionen getestet werden, um eine Website zu finden, die selektiv geändert werden kann, ohne die biologische Aktivität abzuschaffen. Sobald ein Standort/die Standorte identifiziert wurden, ist die Installation eines Linker-Moietys oft unerlässlich, um einen sterischen Abstand zwischen dem biologischen Wirkungsort und dem inaktiven Fluorophor zu schaffen. Es ist darauf zu achten, dass die Reaktion, die verwendet wird, um den Linker an das Antibiotikum zu befestigen, eine biostabile funktionelle Gruppe hinterlässt, um beispielsweise Ester zu vermeiden, die durch Esterasen in vivo anfällig für Spaltung sind. Je nach pharmakodynamischem und pharmakokinetischem Profil des Antibiotikums kann ein einfacher Alkyllinker verwendet werden, oder es sollte eine weniger lipophile Option wie ein Linker aus Polyethylenglykol (PEG) in Betracht gezogen werden. Wenn der Linker angebracht ist, sollte die antibakterielle Aktivität bewertet werden, um sicherzustellen, dass die MICs gegen relevante Bakterien der Stammverbindung ähneln.
In dieser Arbeit empfehlen wir die Verwendung von Huigsen Azid-Alkyn [3+2] dipolarer Cycloaddition (Klickchemie, siehe Abbildung 1) zum Ligatenfluorophor zum Antibiotikum, aus einer Reihe von Gründen. Klickreaktionen sind sehr selektiv, was bedeutet, dass der Schutz von reaktiven Gruppen auf dem Antibiotikum nicht notwendig ist, und darüber hinaus hinterlässt die Reaktion eine stabile, biokompatible Triazol-Feuchtigkeit. Die Azidkomponente wird in den Antibiotikum-Anteil in unseren Verfahren eingeführt, da dies in der Regel leichter mit einer Vielzahl von Strukturtypen als die Einführung eines Alkyns erreicht werden kann. Die Synthesen zweier alkyn-derivatisierter Fluorophore werden hier beschrieben, andere könnten jedoch auf Wunsch erforscht werden. NBD und DMACA wurden aufgrund ihrer geringen Größe ausgewählt, wodurch die Möglichkeit einer Störung der Zelldurchdringung und der Zielinteraktion minimiert wurde. Die Klickreaktion selbst erfolgt mit Kupferkatalyse, wobei entweder Cu2+ (CuSO4, mit einem Ascorbinsäurereduktionsmittel) oder Cu+ (CuI) als Ausgangsreagenz verwendet werden kann. Nach der Reinigung (Abbildung 2) sollten die MICs dann wie beim Azid getestet werden. Selbst bei sorgfältiger Abwägung der Fluorophorwahl und der Anhaftungsstelle ist es möglich, dass eine schlechte Antibiotikaaktivität beobachtet wird. Dies bedeutet jedoch nicht, dass eine inaktive Sonde ohne Gebrauch ist. Wie bei den TMP-Sonden gezeigt, können Verbindungen mit schlechter antibakterieller Aktivität immer noch an das gleiche Ziel wie das Muttermedikament binden. Dies kann Studien über die Wirkweise und Untersuchung von Phänomenen ermöglichen, die zu Resistenzen führen, wie z. B. Efflux.
Wie im Protokollabschnitt beschrieben, ist es möglich, die bakterielle Kennzeichnung durch die fluoreszierenden Antibiotika entweder mit einem einfachen Spektrophotometrie-Assay (Abbildung 3) oder einer Durchflusszytometrie (Abbildung 4) zu analysieren. Beide Methoden sind in der Lage, die zelluläre Akkumulation zu quantifizieren, und durch Lysing von Zellen und die Untersuchung der Fluoreszenzlokalisierung in Lysat ist es möglich, die intrazelluläre Akkumulation zu bewerten. In diesem Protokoll wird die Verwendung von Lysozym für die Zelllyse beschrieben, da es sich um eine schnelle, universelle Technik handelt. Auch andere Lysebedingungen, wie die Nachtbehandlung mit Glycin-HCl7,wurden erfolgreich eingesetzt. Mit dieser Technik, Es ist möglich, die Auswirkungen von Efflux auf Antibiotika-Zellakkumulation zu studieren, Dies ist ein wichtiger Mechanismus der Resistenz. Wenn Efflux tatsächlich in den Bakterien vorhanden ist, wird ein Mangel an intrazellulärer Akkumulation beobachtet werden, obwohl dies mit einem Efflux-Hemmer wie CCCP gerettet werden kann.
Die Mikroskopie kann auch durchgeführt werden, um die Lokalisation von Sonden bei verschiedenen Bakterien visuell zu untersuchen, Informationen über die Wirkart und möglicherweise auch Resistenzen zu sammeln (repräsentative Beispiele siehe Abbildung 5). Um die Lokalisierung innerhalb von Bakterien zu sehen, ist ein hochauflösendes Konfokalmikroskop erforderlich, das mit Funktionen wie SIM (strukturierte Beleuchtungsmikroskopie), SR-SIM (Superresolution-SIM), Airyscan oder STED (stimulierte Emissionserschöpfung) ausgestattet ist. Darüber hinaus sollten hochleistungsstarke Abdeckungsscheine verwendet und nach-Imaging-Analysen mit einer geeigneten Software (z. B. FIJI, Zen oder Imaris) durchgeführt werden. Die Lokalisierung von Sonden wird mit Farbstoffen verglichen, die bestimmte Architekturen färben, wie Hoechst-33342 (blau, Nukleinsäure), Syto-9 (grün, Nukleinsäure) und FM4-64FX (rot, Membran). Die Wahl der Farbstoffe sollte so getroffen werden, dass sie dem fluoreszierenden Antibiotikum entspricht, so dass jede verwendete Farbe minimale spektrale Überlappung hat. Um die bestmöglichen Bilder zu erhalten, kann eine Optimierung erforderlich sein. Zum Beispiel, wenn Bakterien auf der Rutsche zu überfüllt sind, nehmen Sie nur einen Teil des aufgehängten Pellets, dann verdünnen Sie mit mehr Montagemedium. Im Gegensatz dazu, wenn Bakterien zu spärlich auf der Rutsche sind, beginnen Sie einfach mit mehr Bakterien. In diesem Protokoll wird die Verwendung eines thermoreversiblen Gels empfohlen, das mit lebenden Zellen (z. B. Cygel) kompatibel ist, da es Bakterien (einschließlich motiler Bakterien) immobilisiert, aber auch andere Montagemedien oder Agarose erfolgreich eingesetzt wurden.
Insgesamt machen diese Sonden trotz der Herausforderungen, denen bei der Herstellung eines biologisch aktiven fluoreszierenden Antibiotikaderivats begegnet sein kann, die Einfachheit ihrer Verwendung und ihre Vielseitigkeit zu attraktiven Werkzeugen für die Forschung in AMR. Zukünftige Arbeiten mit fluoreszierenden Antibiotika haben das Potenzial, Einblicke in Mechanismen der Antibiotikaresistenz zu geben, unser Verständnis der Funktionsweise aktueller Antibiotika zu verbessern und die Entwicklung besserer Medikamente zu unterstützen.
The authors have nothing to disclose.
MRLS wird durch einen Australian Postgraduate Award (APA) und einen Institute for Molecular Biosciences Research Advancement Award unterstützt. Wanida Phetsang wurde von UQ International Scholarship (UQI) und IMB Postgraduate Award (IMBPA) unterstützt. MAC ist ein NHMRC-Prinzip Forschungsstipendiat (APP1059354) und hält auch eine fraktionierte Professoren-Forschungsstipendiat in der University of Queensland, mit seiner verbleibenden Zeit als CEO von Inflazome Ltd, ein Unternehmen, das Medikamente entwickelt, um klinische unerfüllte Bedürfnisse bei entzündlichen Erkrankungen zu adressieren. MATB wird teilweise von Wellcome Trust Strategic Grant WT1104797/Z/14/Z und NHMRC Development Grant APP1113719 unterstützt. Die Mikroskopie wurde an der Australian Cancer Research Foundation (ACRF)/Institute for Molecular Bioscience Cancer Biology Imaging Facility durchgeführt, die mit Unterstützung des ACRF gegründet wurde.
3-(dimethylamino)phenol | Alfa-Aesar | B23067 | |
4-chloro-7-nitro-benzofuran | Sigma-Aldrich | 163260-5G | |
Amicon Ultra-0.5 centrifugal filter unit with Ultracel- 10 membrane | Merck | UFC501096 | |
Atlantis Prep T3 OBD (100 A, 5 uM, 10×250 mm) | Waters | 186008205 | |
Atlantis T3 column (100 A, 5 uM, 2.1 × 50 mm) | Waters | 186003734 | |
Bruker Avance 600 MHz spectrometer | Bruker | ||
Buchi Reveleris C18 12g Cartridge | Buchi | BUC145152103 | |
CCCP | Sigma-Aldrich | C2759 | |
Celite 545 | Sigma-Aldrich | 22140-5KG-F | |
Cygel | ABCAM | Ab109204 | |
Elyra PS,1 SIM/STORM confocal microscope | Zeiss | ||
FM4-64FX, fixable analog of FM™ 4-64 membrane stain | Life Technologies Australia Pt | F34653 | |
Gallios flow cytometer | Beckman Coulter | ||
Gamma 2-16 LSCplus lyophilise | CHRIST | ||
Gilson HPLC 2020 | Gilson | ||
Hanks' Balanced Salt solution, Modified, with sodium bicarbonate, without phenol red, calcium chloride and magnesium sulfate, liquid, sterile-filtered, suitable for cell culture | Sigma-Aldrich | H6648-500ML | |
Hettich Zentrifugen Rotofix 32 | Hettich | ||
High performance #1.5 cover slips (18 x 18 mm) | Schott/Zeiss | 474030-9000-000 | |
Hoechst 33342, Trihydrochloride, Trihydrate – Fluo | Life Technologies Australia Pt | H21492 | |
LB | AMRESCO | J106 | |
Leica STED 3X Super Resolution Microscope with White Light Laser excitation | Leica | ||
Lysozyme from chicken egg white lyophilized powder |
Sigma-Aldrich | L6876 | |
Mueller Hinton II Broth Cation adjusted | Becton Dickinson | 212322 | |
Propargylamine | Sigma-Aldrich | P50900-5G | |
Reveleris GRACE MPLC | Buchi | ||
Shimadzu LCMS-2020 | Shimadzu | ||
Sigma 1-15 Microcentrifuge | Sigma-Aldrich | ||
Silica gel 60 (0.040-0.063 mm) for column chromatography (230-400 mesh ASTM) | Merck | 1093859025 | |
SYTO 9 Green Fluorescent Nucleic Acid Stain | Life Technologies Australia Pt | S34854 | |
TECAN Infinite M1000 PRO | TECAN |