Impaired mitochondrial transport and morphology are involved in various neurodegenerative diseases. The presented protocol uses induced pluripotent stem cell-derived forebrain neurons to assess mitochondrial transport and morphology in hereditary spastic paraplegia. This protocol allows characterization of mitochondrial trafficking along axons and analysis of their morphology, which will facilitate the study of neurodegenerative disease.
Neurons have intense demands for high energy in order to support their functions. Impaired mitochondrial transport along axons has been observed in human neurons, which may contribute to neurodegeneration in various disease states. Although it is challenging to examine mitochondrial dynamics in live human nerves, such paradigms are critical for studying the role of mitochondria in neurodegeneration. Described here is a protocol for analyzing mitochondrial transport and mitochondrial morphology in forebrain neuron axons derived from human induced pluripotent stem cells (iPSCs). The iPSCs are differentiated into telencephalic glutamatergic neurons using well-established methods. Mitochondria of the neurons are stained with MitoTracker CMXRos, and mitochondrial movement within the axons are captured using a live-cell imaging microscope equipped with an incubator for cell culture. Time-lapse images are analyzed using software with "MultiKymograph", "Bioformat importer", and "Macros" plugins. Kymographs of mitochondrial transport are generated, and average mitochondrial velocity in the anterograde and retrograde directions is read from the kymograph. Regarding mitochondrial morphology analysis, mitochondrial length, area, and aspect ratio are obtained using the ImageJ. In summary, this protocol allows characterization of mitochondrial trafficking along axons and analysis of their morphology to facilitate studies of neurodegenerative diseases.
Mitochondrial motility and distribution play a vital role in fulfilling variable and specialized energetic demands in polarized neurons. Neurons can extend extremely long axons to connect with targets through the formation of synapses, which demand high levels of energy for Ca2+ buffering and ion currents. Transport of mitochondria from soma to axon is critical for supporting axonal and synaptic function of neurons. Spatially and temporally dynamic mitochondrial movement is conducted by fast axonal transport at rates of several micrometers per second1.
Specifically, motor or adaptor proteins, such as kinesin and dynein, participate in the fast organelle transport along microtubules to control the movement of mitochondria2,3. Normal neuronal activity requires proper transport of newly assembled mitochondria from neuronal soma to distal axon (anterograde axonal transport) and reverse transport of mitochondria from the distal axon back to the cell body (retrograde transport). Recent studies have indicated that improper mitochondrial allocation is strongly associated with neuronal defects and motor neuron degenerative diseases4,5. Therefore, to dissect the role of mitochondria in neurodegeneration, it is important to establish methods for examining mitochondrial movement along axons in live cultures.
There are two main challenges in examining and analyzing the tracking of mitochondria: (1) identifying mitochondria from the background in every frame, and (2) analyzing and generating the connections between every frame. In resolving the first challenge, a fluorescence labeling approach is used widely to distinguish mitochondria from the background, such as MitoTracker dye or transfection of fluorescence-fused mitochondrial targeting protein (e.g., mito-GFP)6,7,8. To analyze the association between frames, several algorithms and software tools have been described in previous studies9. In a recent paper, researchers compared four different automated tools (e.g., Volocity, Imaris, wrMTrck, and Difference Tracker) to quantify mitochondrial transport. The results showed that despite discrepancies in track length, mitochondrial displacement, movement duration, and velocity, these automated tools are suitable for evaluating transport difference after treatment10. In addition to these tools, an integrated plugin "Macros" for ImageJ (written by Rietdorf and Seitz) has been widely used for analyzing mitochondrial transport11. This method generates kymographs that can be used to analyze mitochondrial movement, including velocity in both anterograde and retrograde directions.
Mitochondria are highly dynamic organelles that constantly change in number and morphology in response to both physiological and pathological conditions. Mitochondrial fission and fusion tightly regulate mitochondrial morphology and homeostasis. The imbalance between mitochondrial fission and fusion can induce extremely short or long mitochondrial networks, which can impair mitochondrial function and result in abnormal neuronal activities and neurodegeneration. Impaired mitochondrial transport and morphology are involved in various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, Huntington's disease, and hereditary spastic paraplegia (HSP)12,13,14,15. HSP is a heterogeneous group of inherited neurological disorders characterized by the degeneration of the corticospinal tract and subsequent failure to control lower limb muscles16,17. In this study, iPSC-derived forebrain neurons are used to assess mitochondrial transport and morphology in HSP. This method provides a unique paradigm for examining mitochondrial dynamics of neuronal axons in live cultures.
1. Generation of telencephalic glutamatergic neurons from iPSCs
NOTE: The detailed protocol for maintaining iPSCs and their differentiation into telencephalic glutamatergic neurons are similar to those described previously18. Here, the critical process during the differentiation of human pluripotent stem cells is introduced and highlighted.
2. Examination of mitochondrial transport along axons of telencephalic glutamatergic neurons
3. Data analysis of mitochondrial transport and morphology in cortical neurons
NOTE: Analyze the collected data on mitochondrial transport using an image analysis software (e.g., ImageJ or MetaMorph19). Since ImageJ is readily available, perform the analysis of mitochondrial transport and morphology using ImageJ with the MultiKymograph, Macros, and Analyze particles plugins.
Here, human iPSCs were differentiated into telencephalic glutamatergic neurons, which were characterized by immunostaining with Tbr1 and βIII tubulin markers (Figure 1A). To examine the axonal transport of mitochondria, these cells were stained with red fluorescent dye, and time-lapse imaging was performed. Since ImageJ is readily available and easier to obtain, mitochondrial transport was further analyzed with the "MultiKymograph" and "Macros" ImageJ plugins, shown in Figure 1.
There are three respective states of mitochondrial motion, including static, anterograde, and retrograde movement (Figure 1B,C). A single mitochondrion can remain static or move in anterograde or retrograde direction within an axon, and here, a segmented line was drawn along the track of mitochondrial movement to determine velocity (Figure 1D). The velocity of mitochondrial movement along the axon is shown in Figure 1E and corresponds to the segmented lines in Figure 1D after reading by "Macros" in ImageJ. Similar to the MetaMorph software, ImageJ can be used to determine the mitochondrial velocity and percentage of motile mitochondria based on the kymograph generated by ImageJ (Figure 1F). Using commercially available analysis software (e.g., MetaMorph), previous data showed that the percentage of motile mitochondria was significantly reduced in SPG3A neurons compared to normal neurons, while velocity was not altered19. To evaluate the ImageJ software, the percentage of motile mitochondria was examined, and a similar reduction in the percentage of motile mitochondria in SPG3A neurons compared to control wild-type (WT) neurons was observed (Figure 1G).
Regarding analysis of mitochondrial morphology, the mitochondrial area, length, and AR were analyzed using the "analyze particles" function in ImageJ. Axons were straightened using the "straighten" plugin (Figure 2A,B). Mitochondria were chosen clearly by adjusting the threshold (Figure 2C,D). Finally, the mitochondrial area, length (major), width (minor), aspect ratio, and perimeter were obtained from the straightened axon using the "Analyze Particles" plugin (Figure 2E,F). Abnormal mitochondrial morphology was (and has previously been) observed in HSP iPSC-derived telencephalic glutamatergic neurons, including SPG15 cells (Figure 2G,H,I)13,22. Both the mitochondrial length and aspect ratio were significantly reduced in SPG15 neuron axons compared to control WT neuron axons (Figure 2G,H,I).
Figure 1: Analysis of mitochondrial transport using ImageJ. (A) Immunostaining showing the generation of telencephalic glutamatergic neurons. Tbr1 (red), βIII tubulin (green), and Hoechst (blue). Scale bars = 50 µm. This figure has been modified from a previous study19. (B) Mitochondrial transport within axons of neurons. Anterograde mitochondrial movement is defined as the mitochondria moving from the cell body to distal axon, and retrograde mitochondrial movement originates from the distal axon and extends to the neuronal cell body. The segment line is drawn along axons from neuronal cell body to distal axonal terminal in order to generate kymographs. (C) Kymograph is generated using ImageJ; x-axis is the axonal position and y-axis is time. One continuous white line is the mitochondrion moving in anterograde direction (pink arrowhead), retrograde direction (blue arrowhead), or static state (yellow arrowhead). (D) The segmented line is drawn to read the velocity using the Macros plugin. Numbers 1–8 describe the segment of the line. Anterograde movement (1–4, 6, 8) and static state (5, 7) can be distinguished from this magnified kymograph. (E) Time and moving distance for each segment, actual and average velocity (in pixels). (F) Kymograph of mitochondrial transport for WT and SPG3A cortical PNs using ImageJ. Scale bar = 10 µm. (G) Motile mitochondrial ratio in WT and SPG3A cortical PNs using ImageJ (*p < 0.05). Please click here to view a larger version of this figure.
Figure 2: Analyzing mitochondrial morphology using ImageJ. (A) Parameters for straightening the axon. (B) The representative straightened axon. (C,D) Adjustment of threshold to choose mitochondria. (E,F) The measured mitochondrial area, perimeter, length (major), width (minor), and aspect ratio (AR) corresponding to the selected mitochondria in (E). (G) Representative pictures of mitochondria in WT and SPG15 telencephalic glutamatergic neurons. Scale bars = 20 µm. (H) Mitochondrial length in WT and SPG15 neurons. (I) Aspect ratio of mitochondria in WT and SPG15 neurons. **p < 0.01 vs. WT. (G), (H), and (I) are modified from a previous study13. Please click here to view a larger version of this figure.
Fluorescent Tools | Advantages | Disadvantages | Referenzen |
MitoTracker | MitoTracker is mitochondrial potential-independent and can be used to analyze the colocalization of mitochondria with autophagosome or lysosome. | MitoTracker is not photostable enough for long-term research. | 35 |
NPA-TPP | This dye is a novel photostable mitochondrial labeling reagent. | The synthesis and purification process of this dye is time-consuming and costly. | 23 |
MitoBADY | This dye can be used for mitochondrial visualization using Raman microscopy with high sensitivity and specificity. | Using this dye requires Raman microscope. | 25 |
TMRE | This dye is a non-toxic, specific mitochondrial staining dye with low concentration and no quenching effect. | TMRE labeling mitochondria depends on the mitochondrial membrane potential. | 36, 37 |
Mitochondria-targeted fluorescent proteins | Mitochondria-targeted fluorescent proteins are more specific and stable. | This method needs transfection and transfection efficiency is different for different cell types. | 38, 39 |
Table 1: Advantages and disadvantages of some fluorescent tools for mitochondrial labeling.
This article describes a method to analyze mitochondrial transport and morphology in neuronal axons using red fluorescent dye and ImageJ software, both of which provide a unique platform to study axonal degeneration and mitochondrial morphology in neurodegenerative disease. There are several critical steps in the protocol, including staining of mitochondria, live cell imaging, and analyzing the images. In this method, a fluorescent dye was used to stain mitochondria. Since human iPSC-derived neurons are easily detached from the dish, it is important to leave some solution in the dish and gently add neurobasal medium. The washing can be performed three or four times to remove the dye. In addition, mitochondria can be labeled with other reporters to measure their transport along axons, such as fluorescent protein fused mitochondria targeting proteins6. In long-term tracking, several probes (i.e., NPA-TPP, 2,1,3-benzothiadiazole [BTD] fluorescent derivatives, and a specific Raman probe) showed great potential in long-term mitochondrial tracking and mitochondrial dynamics analysis23,24,25. The advantages and disadvantages of various probes can be found in the Table 1.
After mitochondrial staining, live cell imaging is performed using a microscope equipped with an incubator. To effectively focus the neurons during imaging, neural samples should be kept in the 37 °C incubator with 5% CO2 and in a humid environment for at least 15 min. To minimize the out-of-focus effects, images at different Z-positions can be taken to make a Z-stack, or the auto-focus function can be utilized. Importantly, to identify the direction of mitochondrial transport (anterograde or retrograde), phase images are taken to distinguish the neuronal cell body and axons. Another critical issue is photobleaching of fluorescent samples, which must be prevented to obtain efficient mitochondrial transport time-lapse images. An effective method to minimize photobleaching is to focus samples through the eyepiece and set all imaging parameters under the phase channel, except for exposure time. Moreover, the automatic scaling pattern can decrease photobleaching of fluorescence.
Mitochondria are highly dynamic organelles and can move in both anterograde and retrograde directions. In neurons, a few mitochondria within axons stay stationary during the recording. Among the moving mitochondria, motion status can vary over time. This phenomenon raises the important question of which mitochondria type is considered stationary or moving. This can be resolved by setting the threshold during mitochondrial axonal transport analysis. To distinguish the static mitochondria, Neumann et al. used the mitochondrial track center, which is defined as the mean of its position coordinates over time, then set the threshold to 350 nm/s so that the maximum deviation distance of the mitochondrion from its track center is in the first frame26. In another study, the authors set 50 nm/s as the threshold to distinguish stationary status from the moving status27. A 300 nm/s threshold was used here to distinguish the microtubule-based transport as done in previous reports28,29. Although the threshold for stationary and moving mitochondria is different, setting the threshold can provide important relative information on mitochondrial movement within axons between wild-type and degenerative neurons.
Most protocols involving mitochondrial transport analysis have used kymograms, which are two-dimensional representation of positions versus time. Multiple automated tools have been developed for the analysis of particle tracking26,30,31,32,33,34. These can accurately separate each frame. In addition to the velocity and motile percentage that ImageJ can measure, this method can measure motile events accurately. However, these are not free to use. Here, the analysis of mitochondrial transport was performed using ImageJ with the "Multikymograph" and "Macros" plugins. These plugins can effectively measure mitochondrial movement. The advantage of these plugins is their ease of use and ability to indicate alterations in mitochondrial axonal transport in the form of kymographs and velocity over time.
Motile mitochondria were analyzed in SPG3A and control neurons. A similar reduction in the percentage of motile mitochondria was observed using two different analysis methods, confirming the usefulness of ImageJ to analyze axonal transport. In addition, mitochondrial morphology can be analyzed using the same set of images, which provides important readouts for studying mitochondrial dysfunction in various neurological diseases. Since axonal degeneration and mitochondrial dysfunction usually occur during earlier stages, before neurons die, this method can be used to examine early pathological changes to help identify molecular pathways and screen therapeutics to rescue neurodegeneration.
The authors have nothing to disclose.
This work was supported by the Spastic Paraplegia Foundation, the Blazer Foundation and the NIH (R21NS109837).
Accutase Cell Detachment Solution | Innovative Cell Technologies | AT104 | |
Biosafety hood | Thermo Scientific | 1300 SERIES A2 | |
Bovine serum albumin (BSA) | Sigma | A-7906 | |
Brain derived neurotrophic factor (BDNF) | Peprotech | 450-02 | |
Centrifuge | Thermo Scientific | Sorvall Legend X1R/ 75004261 | |
Coverslips | Chemiglass Life Sciences | 1760-012 | |
Cyclic AMP (cAMP) | Sigma-Aldrich | D0627 | |
Dispase | Gibco | 17105-041 | |
Dorsomorphin | Selleckchem | S7146 | |
Dulbecco's modified eagle medium with F12 nutrient mixture (DMEM/F12) | Corning | 10-092-CV | |
FBS | Gibco | 16141-002 | |
Fibroblast growth factor 2 (FGF2, bFGF) | Peprotech | 100-18B | |
Geltrex LDEV-Free Reduced Growth Factor Basement Membrane Matrix | Gibco | A1413201 | |
Gem21 NeuroPlex Serum-Free Supplement | Gemini | 400-160 | |
Glass Bottom Dishes | MatTek | P35G-0.170-14-C | |
9'' glass pipetes | VWR | 14673-043 | |
Glial derived neurotrophic factor (BDNF) | Sigma-Aldrich | D0627 | |
GlutaMAX-I | Gibco | 35050-061 | |
Heparin | Sigma | H3149 | |
Insulin growth factor 1 (IGF1) | Invitrogen | M7512 | |
Knockout Serum Replacer | Gibco | A31815 | |
Laminin | Sigma | L-6274 | |
2-Mercaptoethanol | Sigma | M3148-100ML | |
MitoTracker CMXRos | Invitrogen | M7512 | |
Neurobasal medium | Gibco | 21103-049 | |
Non Essential Amino Acids | Gibco | 11140-050 | |
N2 NeuroPle Serum-Free Supplement | Gemini | 400-163 | |
Olympus microscope IX83 | Olympus | IX83-ZDC2 | |
PBS | Corning | 21-031-CV | |
Phase contrast microscope | Olympus | CKX41/ IX2-SLP | |
6 well plates | Corning | 353046 | |
24 well plates | Corning | 353047 | |
Poly-L-ornithine hydrobromide (polyornithine)) | Sigma-Aldrich | P3655 | |
SB431542 | Stemgent | 04-0010 | |
Sterile 50ml Disposable Vacuum Filtration System 0.22 μm Millipore Express® Plus Membrane | Millipore | SCGP00525 | |
Stericup 500/1000 ml Durapore 0.22 μM PVDF | Millipore | SCGVU10RE | |
Tbr1 antibody (1:2000) | Chemicon | AB9616 | |
Trypsin inhibitor | Gibco | 17075029 | |
50 ml tubes | Phenix | SS-PH50R | |
15 ml tubes | Phenix | SS-PH15R | |
T25 flasks (untreated) | VWR | 10861-572 | |
Plugins for softwares | |||
Bio-formats Package | http://downloads.openmicroscopy.org/bio-formats/5.1.0/ | ||
Fiji software | https://fiji.sc/ | ||
Kymograph Plugin | https://www.embl.de/eamnet/html/body_kymograph.html | ||
MultipleKymograph.class | https://www.embl.de/eamnet/html/body_kymograph.html | ||
MultipleOverlay.class | https://www.embl.de/eamnet/html/body_kymograph.html | ||
WalkingAverage.class | https://www.embl.de/eamnet/html/body_kymograph.html | ||
StackDifference.class | https://www.embl.de/eamnet/html/body_kymograph.html | ||
Straighten_.jar | https://imagej.nih.gov/ij/plugins/straighten.html | ||
tsp050706.txt | https://www.embl.de/eamnet/html/body_kymograph.html |