Summary

小鼠中人类胸膜皮质瘤的PET/CT的植入与监测

Published: December 21, 2019
doi:

Summary

本文介绍了通过将H2052/484中皮瘤细胞植入免疫功能性贫血小鼠胸腔,生成人类胸膜中皮瘤的正交小鼠模型。通过非侵入性多式联运 =18F_-2-fluo-2-脱氧-D-葡萄糖正电子发射断层扫描和计算机断层成像,对胸腔内肿瘤的发展进行了纵向监测。

Abstract

恶性胸膜内皮瘤(MPM)是一种罕见的、具有攻击性的肿瘤,在覆盖肺部、心脏和胸腔的中皮内出现。MPM 开发主要与石棉相关。治疗只能提供适量的存活率,因为中位平均存活率从诊断时起为9-18个月。因此,必须确定更有效的治疗方法。描述新治疗靶点的大多数数据都是从体外实验中获得的,需要在可靠的体内临床前模型中进行验证。本文介绍了一种在将人类MPM细胞系H2052/484注射到免疫缺陷贫血小鼠胸腔后获得的这种可靠的MPM正位模型。在正交位位移植允许研究肿瘤在自然体内环境的进展。正电子发射断层扫描/计算机断层扫描(PET/CT)分子成像使用临床[18F+-2-氟-2-脱氧-D-葡萄糖(=18F_FDG)放射跟踪器是检查MPM患者的首选诊断方法。因此,使用18F_FDG-PET/CT 纵向监测 H2052/484 正射模型的疾病进展。这种技术具有很高的3R潜力(Reuce动物的数量,Refine以减轻疼痛和不适,和Replace动物实验与替代品),因为肿瘤的发展可以监测非侵入性和动物的数量可以大大减少。

该模型显示高开发率,快速肿瘤生长,是成本效益,并允许快速临床翻译。通过使用这个正交异种性异种性MPM模型,研究人员可以评估治疗干预后可靠MPM模型的生物反应。

Introduction

恶性胸膜内皮瘤(MPM)是一种癌症,最常见的是与接触石棉纤维1,2,3。虽然石棉在大多数西方国家已被禁用4,5,6,MPM的发病率仍然增加7,8。最近,老鼠接触碳纳米管表明,它们可能导致人类健康风险很大。数据表明,接触这些产品可能导致慢性炎症和分子变化(例如,肿瘤抑制途径的丧失),从而导致恶性间皮瘤的恶化。目前,多壁碳纳米管是纳米技术最重要的产品之一,并越来越多地被纳入各种产品,如复合材料、储能材料、医药、电子和环境修复材料。

MPM是一种预后不佳的癌症,大多数患者在诊断后两年内死亡,因为目前治疗方式11的疗效有限。MPM治疗的选择取决于癌症阶段。对于大多数早期MPM(阶段1,可能一些阶段2或3肿瘤),临床方法是一种多模态疗法,包括肿瘤的手术切除,与放疗和化疗12相关。结合顺铂和pemxed联合化疗,用于治疗大多数被诊断为晚期局部侵入性疾病的患者,即不适合手术切除,或否则不适合治疗手术13,14。因此,迫切需要为MPM患者开发更有效的治疗方法。然而,很少有经过验证的体内动物模型能够反映MPM的临床相关性。几个小鼠MPM模型已经开发,但其中大多数没有忠实地重述MPM肿瘤微环境15,16,17,18的复杂方面在小鼠、基因工程MPM小鼠模型或鼠MPM细胞系协同移植模型中使用石棉诱导的MPM受到基本表型和功能差异的限制,因此,将新发现转化为临床效果不佳。其他临床前小鼠MPM模型主要依靠免疫缺陷小鼠的人类细胞系的皮下或围肠异种移植物。虽然这些模型很容易监测和提供基本数据,但这些异种移植物的微观环境并不与人类肿瘤相媲美,损害大多数这些临床前研究的转化能力17,19。相反,正交异种移植更好地反映患者的肿瘤行为和治疗反应,因为他们被一个类似的微环境包围,在原始肿瘤部位16发现。

分子成像由+18F_FDG-PET/CT是纵向监测MPM20,21患者疾病进展的首选方法。因此,采用这种非侵入性成像方法,极大地促进了临床前研究转化为临床试验16,22。此外,它有助于减少所需的动物数量,因为每只动物代表自己的控制随着时间的推移。

在本文中,我们提出了一个可靠的正交异种异种移植MPM模型后,获得的人MPM细胞系H2052/484注射到胸腔的贫血小鼠。结合18F_FDG-PET/CT成像,该模型是研究新的诊断策略和治疗人体MPM的功能和机械效应的宝贵和可重复的方法。

Protocol

下文描述的所有程序均经机构动物护理和使用委员会以及瑞士日内瓦兽医国家办公室(授权 GE/106/16)批准。MPM细胞系H2052/484在我们的实验室建立和特征,详细在科林DJ等人的文章23。简单地说,H2052/484细胞系是从将NCI-H2052(ATCC)细胞注射到免疫缺陷裸鼠体内后获得的胸腔肿瘤建立的。 1. 实验设计 使用统计功率计算(例如<a href="http://powerandsamplesize.com/…

Representative Results

H2052/484 正射模型通过胸腔内注射培养癌细胞,特别是H2052/484细胞进行正交MPM模型,设置相对容易。上述不同步骤只需要适度的细胞培养知识,而中等训练的动物实验者可以进入手术步骤。裸体小鼠和细胞应在无菌条件下操作,以最大化植入的结果。通过仔细遵循这个方案,包括短暂的麻醉和最小的手术,我们只遇到1死亡在266小鼠注射不同的MPM细胞系。在266只被仔细注射的小鼠中?…

Discussion

本文介绍了注射在贫血小鼠胸腔中的MPM H2052/484细胞的原始正交模型,以及一种通过小动物PET/CT成像进行监测的方法。该模型可以实施与适度的动物处理和手术技能,并显示一个非常好的发展速度。它允许在未治疗的小鼠中,在未治疗的小鼠中留出约10周的大实验窗口,并在注射后2周内对肿瘤进行非侵入性纵向检测。

正交模型依赖于将活细胞或组织直接植入肿瘤的初始环境中?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项研究由利格·吉纳沃塞癌症(V.S.-B.)和日内瓦和洛桑大学和医院的生物医学成像中心(CIBM)资助(到D.J.C.、O.B.和S.G.)。

Materials

3-mice bed Minerve bed for mice imaging
Athymic Nude-Foxn1n nu/nu Envigo, Huntingdon, UK 6907F immunodeficient mouse
Betadine Mundipharma Medical Company, CH 111131 polyvidone iodine solution
Dulbecco's Phosphate-Buffered Saline (DPBS) ThermoFisher Scientific, Waltham, MA, USA 14190094 Buffer for cell culture
Fetal bovine serum (FBS) PAA Laboratories, Pasching, Austria A15-101 cell culture medium supplement
Insulin syringes BD Biosciences, San Jose, CA, USA 324826 syringe for cell injection
Penicillin/Streptomycin ThermoFisher Scientific, Waltham, MA, USA 15140122 antibiotics for cell culture medium
RPMI 1640 ThermoFisher Scientific, Waltham, MA, USA 61870010 basal cell culture medium
Temgesic (Buprenorphin 0.3 mg/mL) Alloga SA, CH 700320 opioid analgesic product
Triumph PET/SPECT/CT Trifoil, Chatsworth, CA, USA imaging equipment
Trypsin ThermoFisher Scientific, Waltham, MA, USA 25050014 enzymatic cell dissociation buffer
Virkon S 2% Milian, Vernier, CH 972472 disinfectant
Vivoquant Invicro, Boston, MA, USA

Referenzen

  1. Grishman, E., Cohen, S., Salomon, M. I., Churg, J. Renal lesions in acute rheumatic fever. The American Journal of Pathology. 51 (6), 1045-1061 (1967).
  2. Mossman, B. T., Gee, J. B. Asbestos-related diseases. The New England Journal of Medicine. 320 (26), 1721-1730 (1989).
  3. Pass, H. I., et al. Asbestos exposure, pleural mesothelioma, and serum osteopontin levels. The New England Journal of Medicine. 353 (15), 1564-1573 (2005).
  4. Allen, L. P., Baez, J., Stern, M. E. C., Takahashi, K., George, F. Trends and the Economic Effect of Asbestos Bans and Decline in Asbestos Consumption and Production Worldwide. The Journal of Environmental Research and Public Health. 15 (3), (2018).
  5. LaDou, J., et al. The case for a global ban on asbestos. Environmental Health Perspectives. 118 (7), 897-901 (2010).
  6. Soeberg, M., Vallance, D. A., Keena, V., Takahashi, K., Leigh, J. Australia’s Ongoing Legacy of Asbestos: Significant Challenges Remain Even after the Complete Banning of Asbestos Almost Fifteen Years Ago. The Journal of Environmental Research and Public Health. 15 (2), (2018).
  7. Glynn, M. E., Keeton, K. A., Gaffney, S. H., Sahmel, J. Ambient Asbestos Fiber Concentrations and Long-Term Trends in Pleural Mesothelioma Incidence between Urban and Rural Areas in the United States (1973-2012). Risk Analysis. 38 (3), 454-471 (2018).
  8. Zhao, J., et al. Epidemiology and trend analysis on malignant mesothelioma in China. The Chinese Journal of Cancer Research. 29 (4), 361-368 (2017).
  9. Chernova, T., et al. Long-Fiber Carbon Nanotubes Replicate Asbestos-Induced Mesothelioma with Disruption of the Tumor Suppressor Gene Cdkn2a (Ink4a/Arf). Current Biology. 27 (21), 3302-3314 (2017).
  10. Fukushima, S., et al. Carcinogenicity of multi-walled carbon nanotubes: challenging issue on hazard assessment. The Journal of Occupational Health. 60 (1), 10-30 (2018).
  11. Robinson, B. W., Musk, A. W., Lake, R. A. Malignant mesothelioma. The Lancet. 366 (9483), 397-408 (2005).
  12. Ricciardi, S., et al. Surgery for malignant pleural mesothelioma: an international guidelines review. The Journal of Thoracic Diseases. 10, 285-292 (2018).
  13. Hiddinga, B. I., Rolfo, C., van Meerbeeck, J. P. Mesothelioma treatment: Are we on target? A review. The Journal of Advanced Research. 6 (3), 319-330 (2015).
  14. Kim, J., Bhagwandin, S., Labow, D. M. Malignant peritoneal mesothelioma: a review. Annals of Translational Medicine. 5 (11), 236 (2017).
  15. Ampollini, L., et al. Immuno-chemotherapy reduces recurrence of malignant pleural mesothelioma: an experimental setting. The European Journal of Cardiothoracic Surgery. 35 (3), 457-462 (2009).
  16. de Jong, M., Essers, J., van Weerden, W. M. Imaging preclinical tumour models: improving translational power. Nature Reviews Cancer. 14 (7), 481-493 (2014).
  17. Mak, I. W., Evaniew, N., Ghert, M. Lost in translation: animal models and clinical trials in cancer treatment. The American Journal of Translational Research. 6 (2), 114-118 (2014).
  18. Mazzocchi, A. R., Rajan, S. A. P., Votanopoulos, K. I., Hall, A. R., Skardal, A. In vitro patient-derived 3D mesothelioma tumor organoids facilitate patient-centric therapeutic screening. Scientific Reports. 8 (1), 2886 (2018).
  19. Gengenbacher, N., Singhal, M., Augustin, H. G. Preclinical mouse solid tumour models: status quo, challenges and perspectives. Nature Reviews Cancer. 17 (12), 751-765 (2017).
  20. Kanemura, S., et al. Metabolic response assessment with 18F-FDG-PET/CT is superior to modified RECIST for the evaluation of response to platinum-based doublet chemotherapy in malignant pleural mesothelioma. The European Journal of Radiology. 86, 92-98 (2017).
  21. Truong, M. T., Viswanathan, C., Godoy, M. B., Carter, B. W., Marom, E. M. Malignant pleural mesothelioma: role of CT, MRI, and PET/CT in staging evaluation and treatment considerations. Seminars in Roentgenology. 48 (4), 323-334 (2013).
  22. MacArthur Clark, J. The 3Rs in research: a contemporary approach to replacement, reduction and refinement. The British Journal of Nutrition. 120, 1-7 (2018).
  23. Colin, D. J., et al. Experimental Model of Human Malignant Mesothelioma in Athymic Mice. The International Journal of Molecular Sciences. 19 (7), (2018).
  24. Fueger, B. J., et al. Impact of animal handling on the results of 18F-FDG PET studies in mice. The Journal of Nuclear Medicine. 47 (6), 999-1006 (2006).
  25. Devaud, C., et al. Tissues in different anatomical sites can sculpt and vary the tumor microenvironment to affect responses to therapy. Molecular Therapy. 22 (1), 18-27 (2014).
  26. Belizário, J. E. Immunodeficient mouse models: An overview. The Open Immunology Journal. 2, 79-85 (2009).
  27. Jackaman, C., Yeoh, T. L., Acuil, M. L., Gardner, J. K., Nelson, D. J. Murine mesothelioma induces locally-proliferating IL-10(+)TNF-alpha(+)CD206(-)CX3CR1(+) M3 macrophages that can be selectively depleted by chemotherapy or immunotherapy. Oncoimmunology. 5 (6), 1173299 (2016).
  28. James, M. L., Gambhir, S. S. A molecular imaging primer: modalities, imaging agents, and applications. Physiological Reviews. 92 (2), 897-965 (2012).
  29. Kenny, L. M., Aboagye, E. O. Clinical translation of molecular imaging agents used in PET studies of cancer. Advances in Cancer Research. 124, 329-374 (2014).

Play Video

Diesen Artikel zitieren
Colin, D. J., Bejuy, O., Germain, S., Triponez, F., Serre-Beinier, V. Implantation and Monitoring by PET/CT of an Orthotopic Model of Human Pleural Mesothelioma in Athymic Mice. J. Vis. Exp. (154), e60272, doi:10.3791/60272 (2019).

View Video