We introduce a kinematic analysis method that uses a three-dimensional motion capture apparatus containing four cameras and data processing software for performing functional evaluations during fundamental research involving rodent models.
Compared to the Sciatic Functional Index (SFI), kinematic analysis is a more reliable and sensitive method for performing functional evaluations of sciatic nerve injury rodent models. In this protocol, we describe a novel kinematic analysis method that uses a three-dimensional (3D) motion capture apparatus for functional evaluations using a rat sciatic nerve crush injury model. First, the rat is familiarized with treadmill walking. Markers are then attached to the designated bone landmarks and the rat is made to walk on the treadmill at the desired speed. Meanwhile, the posterior limb movements of the rat are recorded using four cameras. Depending on the software used, marker tracings are created using both automatic and manual modes and the desired data are produced after subtle adjustments. This method of kinematic analysis, which uses a 3D motion capture apparatus, offers numerous advantages, including superior precision and accuracy. Many more parameters can be investigated during the comprehensive functional evaluations. This method has several shortcomings that require consideration: The system is expensive, can be complicated to operate, and may produce data deviations due to skin shifting. Nevertheless, kinematic analysis using a 3D motion capture apparatus is useful for performing functional anterior and posterior limb evaluations. In the future, this method may become increasingly useful for generating accurate assessments of various traumas and diseases.
The Sciatic Functional Index (SFI) is the benchmark method for carrying out functional sciatic nerve evaluations1. The SFI has been widely adopted and is frequently used within various functional evaluation studies on rat sciatic nerve injuries2,3,4,5,6. In spite of its popularity, there are several problems with SFI, including automutilation7, joint contracture risk, and smearing of the footprints8. These problems seriously affect its prognostic value9. Therefore, an alternative, less error-prone method is required as a substitute for the SFI.
One such alternative method is kinematic analysis. This includes comprehensive gait analysis using tracking markers attached to bony landmarks or joints. Kinematic analysis is increasingly used for functional evaluations9. This method is progressively being recognized as a reliable and sensitive tool for functional evaluation10 without the shortcomings attributed to the SFI11,12.
In this protocol, we describe a series of kinematic analyses that use a 3D motion capture apparatus consisting of a treadmill, four 120 Hz charged coupled device (CCD) cameras, and data processing software (see Table of Materials). This kinematic analysis method differs from general video walking or gait analysis13,14. Two cameras are positioned in different directions to record posterior limb movements from a single side. Subsequently, a 3D digital model of the posterior limb is constructed using computer graphics9. We can calculate designated joint angles, such as hip, knee, ankle, and toe joint, by closely recapitulating the actual limb dimensions. Additionally, we can determine various parameters such as stride/step length and the ratio of the stance phase to the swing phase. These reconstructions are based on a completely reconstructed 3D digital model of the posterior limbs, generated from data transmitted by two sets of cameras. Even the imaginary center of gravity (CoG) trajectory can be calculated automatically.
We used this 3D motion capture apparatus to introduce and assess multiple kinematic parameters that reveal functional changes over time within the context of the rat sciatic nerve crush injury model.
The protocol was approved by the animal experimentation committee of Kyoto University, and all protocol steps were performed in accordance with the Guidelines of the Animal Experimentation Committee, Kyoto University (approval number: MedKyo17029).
1. Familiarizing rats with treadmill walking
2. Performing the sciatic nerve crush injury
3. Attaching the markers
4. Calibration and software setup
5. Recording the walking
6. Marker tracing
7. Kinematic analysis
We selected four parameters to investigate functional changes over time in a rat sciatic nerve crush injury model. These were the ratio of the stance-to-swing phase, center of gravity (CoG) trajectory, ankle angles, and toe angles in the 'toe off' phase9. Twenty-four rats were randomly assigned to one of four groups: the control group (C), rats at the first (1w), third (3w), and sixth (6w) week following left sciatic nerve crush injury.
By means of 3D kinematic analysis, the mean ratio of the stance or swing phase in the 10-step cycle was automatically calculated and represented on the interface (Figure 1A-D). We found that the ratio of the stance-to-swing phase was recovered following surgery.
The CoG is a virtual point that can be traced with a virtual marker by the 3D motion capture apparatus. It is located at the cross point of two lines connecting either of the two anterior superior iliac spines to their contralateral greater trochanters. Thus, the real time pelvic shift in the coronal plane (X and Z axes) results in a simultaneous shift of the CoG as a 3D constructed pelvic model is used. This shift can also be automatically measured. The CoG trajectory is described as the changing curve of the pelvic shift mean value in the X and Z axes of the 10-step cycle. The normal CoG trajectory shape resembles the infinity sign (∞). We found that the CoG trajectory shape did not return to an approximately normal shape until 6 weeks after surgery (Figure 2A-D).
The normal ankle and toe angles in the "toe off" phase reach maximum value during the terminal stance of the step cycle15, but these parameters might be falsely reported if the rat has received surgery. Nevertheless, the 3D kinematic analysis allowed us to determine the angles in the "toe off" phase by referring to the video. The mean value of the ankle or toe angle in the "toe off" phase was calculated from the 10-step cycle. The results suggested that the ankle and toe angles, in the "toe off" phase improved in an upward direction after surgery. (Figure 3A-B).
Figure 1: Bilateral stance and swing phase. The right swing (magenta), right stance (red), left swing (azure), and left stance (blue) phases are represented by their respectively colored bars. Yellow bars symbolize double support phases. Panels A-D show each bilateral stance and swing phase in 10-step cycle periods for the control group (A), 1w (B), 3w (C), and 6w (D) groups. C = control; 1w = 1 week post-surgery; 3w = 3 weeks post-surgery; 6w = 6 weeks post-surgery. Please click here to view a larger version of this figure.
Figure 2: CoG trajectories. Panels A-D show representative average CoG trajectories during 10-step cycle periods for the control group (A), 1w (B), 3w (C), and 6w (D) groups. C = control; 1w = 1 week post-surgery; 3w = 3 weeks post-surgery; 6w = 6 weeks post-surgery. Please click here to view a larger version of this figure.
Figure 3: Ankle and toe angles. Panels A and B show changes over time in the ankle and toe angles in the 10 "toe off" phases for the control group, 1w, 3w, and 6w groups (**p < 0.01, compared to the control group, ** p<0.01, compared to adjacent group. Error bars = standard error of the mean (SEM); C = control; 1w = 1 week post-surgery; 3w = 3 weeks post-surgery; 6w = 6 weeks post-surgery. Please click here to view a larger version of this figure.
Supplementary File 1. Please click here to view this file.
Supplementary File 2. Please click here to view this file.
Supplementary File 3. Please click here to view this file.
Supplementary File 4. Please click here to view this file.
Supplementary File 5. Please click here to view this file.
Supplementary File 6. Please click here to view this file.
Supplementary File 7. Please click here to view this file.
Supplementary File 8. Please click here to view this file.
Supplementary File 9. Please click here to view this file.
Supplementary File 10. Please click here to view this file.
Supplementary File 11. Please click here to view this file.
In this protocol, a stable and continuously walking rat is the most vital component of kinematic analysis. The treadmill speed was set to 20 cm/s. This walking speed is by no means considered "high" if rats move without space constraints16. Nevertheless, this speed is too fast for untrained rats to stably walk on the treadmill and would likely result in an abnormal gait and nonuniform movements. These events may seriously affect data reliability and authenticity. However, treadmill speeds lower than 20 cm/s can cause the rats to intermittently stop walking, potentially producing large deviations and reduced data reliability. Therefore, training the rats to be able to steadily walk in a straight, frontward direction on the treadmill is extremely important if one is to achieve precise kinematic analysis.
Additionally, operators should not ignore the needs for reconfirmation and fine adjustments during the kinematic analysis process. We found that the swing phase accounted for 25% of the step cycle in normal rats. This means that posterior limb movements during the swing phase accelerated to the point where the camera system was not able to accurately capture the movements continually and over time. Also, excessively bright or dim ambient light, stains on the transparent treadmill sheets, and abnormal movement patterns that incidentally occur while walking could result in an exaggerated deviation of the tracing labels from the markers attached to the rats. These factors could reduce the accuracy of the motion capture process. Manual adjustments were introduced into the marker tracing system to address this issue. Using manual adjustment, evident deviations or subtle motion capture losses can be immediately rectified during the marker tracing process. Moreover, reconfirmation of changes in the curves of multiple parameters processed using the kinematic analysis software aided in searching for and correcting flaws in the marker tracing process. Reconfirmation also allowed us to generate the most reliable and authentic data.
Compared to the kinematic analysis, the shortcomings of the SFI are mainly derived from its low accuracy and reliability, rather than from interferences produced by the abovementioned factors. A previous study also noted that the SFI method is neither reliable nor reproducible when applied during the early post-injury period17. On the other hand, the high accuracy and reliability of kinematic analysis has been widely recognized. However, many previous applications were only capable of observing and measuring designated angles, especially ankle angles10,15,18,19,20. The limitations of two-dimensional (2D) video analysis prevents investigation of additional parameters during functional evaluations.
Three-dimensional kinematic analysis overcomes all the shortcomings of SFI and enables investigation of many additional parameters. The 3D digital model is constructed from images captured by four cameras. Consequently, this apparatus can measure or calculate parameters more accurately than conventional 2D kinematic methods. Therefore, kinematic analysis that uses the 3D motion capture apparatus holds enormous promise as a potential substitute for other functional evaluation methods.
However, the 3D kinematic analysis method has several limitations. Training rodents, attaching markers, and tracing examination processes are complicated and time-consuming. In order to obtain reproducible and reliable data, the operator should be well-acquainted with the critical steps required. The skin shifting that occurs during rodent walking is particularly likely to produce data deviations21. Furthermore, the high cost of 3D kinematic analysis equipment may impede its popularization and limit usage in relevant studies.
Previous studies have found that the 3D kinematic analysis achieved accurate and valid results in the context of the rat sciatic nerve injury model9,22. Consequently, we have reasons to believe that this method may be a useful tool for functional evaluations of various trauma or disease states that involve the posterior limbs, including disorders of the central and peripheral nervous system and musculoskeletal diseases. Moreover, by altering the marker positioning, this method may be used to functionally evaluate anterior limb movements. Although these hypotheses require further verification through future experiments, we believe that kinematic analysis using a 3D motion capture apparatus may inspire more promising functional evaluation methods and play an important role in research and clinical applications.
The authors have nothing to disclose.
This study was supported by JSPS KAKENHI Grant Number JP19K19793, JP18H03129, and JP18K19739.
9-0 nylon suture | Bear Medic Corporation. | T06A09N20-25 | |
Anesthetic Apparatus for Small Animals | SHINANO MFG CO.,LTD. | SN-487-0T | |
ISOFLURANE Inhalation Solution | Pfizer Japan Inc. | (01)14987114133400 | |
Kine Analyzer | KISSEI COMTEC CO.,LTD. | N.A. | A analysis software |
Liquid adhesive | KANBO PRAS CORPORATION | PT-B180 | |
Micro forceps | BRC CO. | 16171080 | |
Motion Recorder | KISSEI COMTEC CO.,LTD. | N.A. | A recording software |
Standard surgical hemostat | Fine Science Tools, Inc. | 12501-13 | |
Surgical blade No.10 | FEATHER Safety Razor CO., LTD | 100D | |
Surgical hemostat | World Precision Instruments | 503740 | |
Three-dimensional motion capture apparatus (KinemaTracer for Animal) | KISSEI COMTEC CO.,LTD. | N.A. | A 3D motion analysis system that consists of cameras |
Three-dimensional(3D) Calculator | KISSEI COMTEC CO.,LTD. | N.A. | A marker tracing software |
Treadmill | MUROMACHI KIKAI CO.,LTD | MK-685 | a treadmill with affialiated the electrical schocker, transparent sheats and a speed control apparatus |