Hier wird ein Protokoll vorgestellt, um eine höhere Genauigkeit bei der Bestimmung der Stimulationsposition zu erreichen, die einen 3D-Digitalisierer mit einer hochauflösenden transkraniellen Gleichstromstimulation kombiniert.
Die Fülle von neuroimaging Daten und die schnelle Entwicklung des maschinellen Lernens hat es möglich gemacht, Gehirnaktivierungsmuster zu untersuchen. Jedoch, kausale Beweise für Gehirnbereich Aktivierung führt zu einem Verhalten wird oft fehlen gelassen. Transkranielle Gleichstromstimulation (tDCS), die vorübergehend die kortikale Erregbarkeit und Aktivität des Gehirns verändern kann, ist ein nichtinvasives neurophysiologisches Werkzeug, das zur Untersuchung kausaler Zusammenhänge im menschlichen Gehirn verwendet wird. High-Definition transkranielle Gleichstromstimulation (HD-tDCS) ist eine nichtinvasive Hirnstimulationstechnik (NIBS), die im Vergleich zu herkömmlichen tDCS einen fokaleren Strom erzeugt. Traditionell wurde die Stimulationsposition grob über das 10-20 EEG-System bestimmt, da die Bestimmung präziser Stimulationspunkte schwierig sein kann. Dieses Protokoll verwendet einen 3D-Digitalisierer mit HD-tDCS, um die Genauigkeit bei der Bestimmung von Stimulationspunkten zu erhöhen. Die Methode wird mit einem 3D-Digitalisierer zur genaueren Lokalisierung von Stimulationspunkten in der rechten temporo-parietalen Kreuzung (rTPJ) demonstriert.
Transkranielle Gleichstromstimulation (tDCS) ist eine nichtinvasive Technik, die kortikale Erregbarkeit mit schwachen Gleichströmungen über der Kopfhaut moduliert. Es zielt darauf ab, Kausalität zwischen neuronaler Erregbarkeit und Verhalten bei gesunden Menschen zu etablieren1,2,3. Darüber hinaus ist tDCS als motorischer Neurorehabilitationswerkzeug weit verbreitet bei der Behandlung von Parkinson-Krankheit, Schlaganfall und Zerebralparese4. Vorhandene Beweise deuten darauf hin, dass traditionelle Pad-basierte tDCS Stromfluss durch eine relativ größere Gehirnregionerzeugt 5,6,7. High-Definition transkranielle Gleichstromstimulation (HD-tDCS), mit der mittleren Ringelektrode sitzt über einem Ziel kortikalen Bereich von vier Rücklaufelektroden8,9, erhöht die Focalität durch Umschreiben von vier Ringbereichen5,10. Darüber hinaus haben Veränderungen der Erregbarkeit des Gehirns, die durch HD-tDCS induziert werden, deutlich größere Größen und längere Dauern als die, die durch herkömmliche tDCS7,11erzeugt werden. Daher ist HD-tDCS weit verbreitet in der Forschung7,11.
Die nichtinvasive Hirnstimulation (NIBS) erfordert spezielle Methoden, um sicherzustellen, dass eine Stimulationsstelle in den Standard-MNI- und Talairach-Systemen12vorhanden ist. Neuronavigation ist eine Technik, die es ermöglicht, Wechselwirkungen zwischen transkraniellen Reizen und dem menschlichen Gehirn zu kartieren. Die Visualisierung und 3D-Bilddaten werden für eine präzise Stimulation verwendet. Sowohl bei tDCS als auch bei HD-tDCS ist eine gemeinsame Bewertung von Stimulationsstellen auf der Kopfhaut typischerweise das EEG 10-20 System13,14. Diese Messung ist weit verbreitet für die Platzierung der tDCS Pads und OptodeHalter für die funktionelle Nahinfrarotspektroskopie (fNIRS) in der Anfangsphase13,14,15.
Die Bestimmung der genauen Stimulationspunkte bei Verwendung des 10-20-Systems kann schwierig sein (z.B. in der temporo-parietalen Kreuzung [TPJ]). Der beste Weg, dies zu lösen, besteht darin, Strukturbilder von Teilnehmern mittels Magnetresonanztomographie (MRT) zu erhalten und dann die exakte Sondenposition zu erhalten, indem Zielpunkte mit Hilfe von Digitalisierungsprodukten15zu ihren Strukturbildern abgerechnet werden. MRT bietet eine gute räumliche Auflösung, ist aber teuer zu verwenden15,16,17. Darüber hinaus können einige Teilnehmer (z. B. teilnehmer mit Metallimplantaten, klaustrophobische Personen, Schwangere usw.) nicht MRT-Scannern unterzogen werden. Daher besteht ein dringender Bedarf an einem bequemen und effizienten Weg, um die oben genannten Einschränkungen zu überwinden und die Genauigkeit bei der Bestimmung von Stimulationspunkten zu erhöhen.
Dieses Protokoll verwendet einen 3D-Digitalisierer, um diese Einschränkungen zu überwinden. Im Vergleich zur MRT sind niedrige Kosten, einfache Anwendung und Portabilität die hauptwichtigsten Vorteile eines 3D-Digitalisierers. Es kombiniert fünf Bezugspunkte (z. B. Cz, Fpz, Oz, linker präauricularer Punkt und rechter präauricularer Punkt) von Individuen mit Standortinformationen der Zielstimulationspunkte. Dann erzeugt es eine 3D-Position von Elektroden auf dem Kopf des Subjekts und schätzt ihre kortikalen Positionen, indem es mit den riesigen Daten aus dem Strukturbild12,15passt. Diese probabilistische Registrierungsmethode ermöglicht die Darstellung transkranieller Kartierungsdaten im MNI-Koordinatensystem, ohne die Magnetresonanzbilder eines Subjekts aufzuzeichnen. Der Ansatz erzeugt anatomische automatische Etiketten und Brodmann-Bereiche11.
Der 3D-Digitalisierer, der verwendet wird, um Raumkoordinaten basierend auf den Daten aus Strukturbildern zu markieren, wurde zuerst verwendet, um die Position von Optoden in der fNIRS-Forschung18zu bestimmen. Für diejenigen, die HD-tDCS verwenden, bricht ein 3D-Digitalisierer die endlichen Stimulationspunkte des EEG 10-20 Systems. Der Abstand der vier Rücklaufelektroden und der Mittelelektrode ist flexibel und kann bei Bedarf eingestellt werden. Bei Verwendung des 3D-Digitizers mit diesem Protokoll wurden die Koordinaten des rTPJ ermittelt, was über das 10-20-System hinausgeht. Gezeigt werden auch die Verfahren zur Gezieltheit und Stimulierung der richtigen temporo-parietalen Kreuzung (rTPJ) des menschlichen Gehirns.
Im Vergleich zu herkömmlichen tDCS erhöht HD-tDCS die Focierung der Stimulation. Typische Stimulationsstellen basieren oft auf dem 10-20 EEG-System. Die Bestimmung der genauen Stimulationspunkte über dieses System hinaus kann jedoch schwierig sein. Dieses Papier kombiniert einen 3D-Digitalisierer mit HD-tDCS, um Stimulationspunkte über das 10-20-System hinaus zu bestimmen. Es ist wichtig, die Schritte und Vorsichtsmaßnahmen für die Herstellung und Verwendung der Elektrodenkappe in solchen Fällen klar zu definieren…
The authors have nothing to disclose.
Diese Studie wurde von der National Natural Science Foundation of China (31972906), Entrepreneurship and Innovation Program for Chongqing Overseas Returned Scholars (cx2017049), Fundamental Research Funds for Central Universities (SWU1809003), Open Forschungsfonds des Schlüssellabors für psychische Gesundheit, Institut für Psychologie, Chinesische Akademie der Wissenschaften (KLMH2019K05), Forschungsinnovationsprojekte von Graduate Student in Chongqing (CYS19117) und der Forschungsprogrammfonds der Collaborative Innovation Assessment Center for Basic Education Quality an der Beijing Normal University (2016-06-014-BZK01, SCSM-2016A2-15003 und JCXQ-C-LA-1). Wir danken Prof. Ofir Turel für seine Vorschläge zum frühen Entwurf dieses Manuskripts.
1X1 Low Intensity transcranial DC Stimulator | Soterix Medical | 1300A | |
3-dimensional Polhemus-Patriot Digitizer | POLHEMUS | 1A0453-001 | PATRIOT system component |
4X1 Multi-Channel Stimulation Interface | Soterix Medical | 4X1-C3 | |
Dell desktop computer | Dell | CRFC4J2 | Master computer to run 3D digitizer application |