Genel amacımız, hücrelerin yönlendirilmiş aksonal büyümeye yol açan hücre dışı ipuçlarını nasıl algıladığını anlamaktır. Burada, akson büyümesini ve yol bulmayı yöneten belirli olayları incelemek için hücre dışı matriks bileşenlerinin tanımlanmış mikro desenlerini üretmek için kullanılan Proteinlerin Hafif Kaynaklı Moleküler Adsorpsiyon metodolojisini açıklıyoruz.
Hücreler, hücre dışı matrisin bileşimi ve geometrisi de dahil olmak üzere, hücrelerin kendileri tarafından sentezlenen ve yeniden biçimlendirilen çeşitli hücre dışı ipuçları nı hissederler. Burada, tek veya bir protein kombinasyonu kullanarak mikro desenli hücre dışı matriks (ECM) yüzeyleri üretmek için primo sistemini bir desenleme tekniği olarak Kullanarak Proteinlerin Işık Kaynaklı Moleküler Adsorpsiyon (LIMAP) yöntemini sunuyoruz. Yöntem, ECM desenlerinin mikron çözünürlükte, mükemmel tekrarlanabilirlik ile yazdırılmasını sağlar. Biz bir adım-adım protokol sağlamak ve nasıl nöronal yol bulma süreçlerini incelemek için uygulanabilir olduğunu göstermektedir. LIMAP, birden fazla bileşenin desenlenme kolaylığı ve herhangi bir geometri veya degradeye sahip bir desen oluşturma becerisi açısından mevcut mikro yazdırma yöntemlerine göre önemli avantajlara sahiptir. Protokol, hemen hemen her kimyasal bileşenin hücre kaderi ve hücre davranışına olan katkısını incelemek için kolayca uyarlanabilir. Son olarak, ortaya çıkabilecek ortak sorunları ve bunların nasıl önlenebileceğini tartışıyoruz.
Son yıllarda biyolojik bilimler, malzeme bilimlerinin sağladığı gelişmelerden giderek daha fazla yararlanmış durumdadır. Önemli bir örnek, hücre çoğalması gibi hücresel yanıtları incelemek için kullanılabilen substratların mikro-desenleme1,2Farklılaşma3,4,5,6, hücre geçişi7,8,9ve yol bulma10,11. Multifoton heyecanlı fotokimya gibi yüzeylerin mikro desenleme sağlayan teknikler vardır12, AFM dip-kalem nanolitografi13, pin ve mürekkep püskürtmeli doğrudan baskı14, elektron ışını litografisi15veya mikroakışkan16. Ancak, biyolojik alanda yaygın olarak kullanılan iki teknik mikrotemas baskı17,18,19veya lazer destekli desenleme3(Şekil 1). Lazer destekli desenleme, mikrotemas baskıya kıyasla, desenlerde protein ve PEG stabilitesi ve hücre hapsi açısından daha güvenilir sonuçlar elde etmek için kabul edilir.20. Burada açıklanan mikro-desenleme için daha yeni bir yaklaşım Proteinlerin Işık Kaynaklı Moleküler Adsorpsiyon kullanımı21(LIMAP,Şekil 1 D) ticari olarak kullanılabilen bir sistem (PRIMO,Malzeme Tablosu). Yöntemlerin her biri aşağıda kısaca açıklanan avantajları ve sınırlamaları vardır. Microcontact baskı, litografili ustalardan oluşturulan istenilen mikro özelliklere sahip PDMS kalıplarını (pulları) kullanır. Pullar, daha sonra hücre kültürü substratına aktarılır (damgalı) seçilmiş bir protein ile kuluçkaya yatırılır.18(Şekil 1 A). Lazer destekli desenleme bir anti-faul film cleave UV ışığı kullanır22,23,24,25, daha sonra ilgi proteini ile kaplanabilir bölgeleri açığa (Şekil 1 B). Fotoğraf desenleme yaklaşımları ile elde edilen çözünürlük mikron aralığında iken25,26, Bu tekniklerin çoğu, örnekle temas halinde veya mikroskop hedefinin nesne düzleminde yer alan bir fotoğraf maskesi gerektirir23,27,28. Hem mikrotemas baskı hem de fotoğraf desenlemede maske gereksinimleri bir sınırlama olabilir; özel maskeler her geometrik desen ve boyut için gereklidir, hangi pahalı ve oluşturmak için zaman alıcı olabilir. Bu tekniklerin aksine, LIMAP bir maske gerektirmez (Şekil 1 D). LIMAP için PRIMO sisteminin kullanılması başlangıçta maliyet yoğun olabilir, çünkü ekipman satın alınması gerekir. Ancak, açık kaynak yazılım çok daha fazla özgürlük veren ve protein konsantrasyongradientleri kullanımı da dahil olmak üzere daha karmaşık deneyler sağlayan, herhangi bir istenilen geometri desenleri tasarlamak için kullanılır. PRIMO lazer, kullanıcı tarafından tanımlanan geometrilerin herhangi bir sayıda desenler oluşturmak için dijital kontrollü mikroayna cihazı (DMD) tarafından kontrol edilir ve yönetilir. LIMAP, kültür yüzeyinin hücre bağlanmasını engelleyen moleküllerle kaplanmasını gerektirir. Polietilen glikol (PEG) en sık böyle bir “antifouling” reaktif olarak kullanılır; bu cam veya plastik yüzey üzerinde yoğun bir anti-yapışkan film oluşturur29. Daha sonra, PEG filminin bir fotosisyon mekanizması aracılığıyla yüksek hassasiyetle kaldırılmasını sağlayan bir fotoğraf başlatıcısı eklenir30DMD kontrolü altında UV ışığına lokal maruz kalma ile. Bu PEG içermeyen bölgeler, lazerle kazınmış yüzeye adsorb proteinleri ile kaplanabilir ve mikro desen oluşturur. Lazer gücünü değiştirerek, farklı miktarlarda PEG kullanıcıprotein gradyanlar oluşturmak için izin yüzeyden kaldırılabilir. PEG kaldırma ve kaplama prosedürü aynı mikro-kuyuda iki veya daha fazla farklı protein ile desenler oluşturmak için tekrarlanabilir21. Oluşturulan mikro desenler hücreler için yapışkan yüzeyler sağlayarak hücre davranışlarının incelenmesine olanak sağlar. Çalışmalarımızda, nöronal hücre hattının (CAD (Cathecholaminergic-a diferansiye) hücrelerinin neurite veya akson yol bulma sını incelemek için mikro-desenleme kullanıyoruz.31) veya primer sıçan dorsal-kök ganglion (DRG) nöronlar, sırasıyla. Burada, LIMAP için adım adım bir protokol anahat (Şekil 2) ticari olarak mevcut PRIMO sistemini ve beraberindeki Leonardo yazılımını kullanarak. Aksonal yol bulgularını incelemek için kullandığımız tanımlanmış geometriler ve çoklu proteinler içeren örüntülerin üretimi için nasıl kullanılabileceğini gösteriyoruz. Ortaya çıkabilecek ortak sorunları ve bunların nasıl önlenebileceğini tartışıyoruz.
LIMAP (PRIMO) mikro desenleme avantajları ve mikrotemas baskı ile karşılaştırma
Mikrotemas baskı muhtemelen biyolojik alanda en yaygın olarak kullanılan mikro-desenleme tekniği iken39, LIMAP teknolojisi40kullanarak araştırmacıların artan sayıda var gibi görünüyor40,41,42 ,43,44. Burada, LIMAP için ticari olarak kullanılabilen bir sistem olan PRIMO’u kullanarak bir protokol sunduk. Aşağıda mikrotemas baskı ve LIMAP fotoğraf desenleme potansiyel avantajları ve sınırlamaları kısaca tartışmak.
Microcontact baskı bir cam veya silikon gofret üzerine bir fotoğraf maskesi (genellikle SU-8) spin kaplama tarafından üretilen litografili ustalar gerektirir, daha sonra lazer istenilen mikro özellikleri ile kazınmış. Bu ustalar bir PDMS damgası oluşturmak için şablon olarak kullanılır45. Pul, ona adsorbs seçilmiş bir protein ile kuluçka, ve daha sonra hücre kültürü çanak üzerine aktarılır (damgalı). PdMS damgasına proteinin adsorpsiyon işlemi protein konsantrasyonu, tampon ve kuluçka süresine bağlıdır. Bu parametrelerin en iyi sonuçlar için önceden test edilmesi gerekir46.
Ustalar, doğru şekilde korunursa aylarca hatta yıllarca süren önemli sayıda deneyde kullanılabilir. Ancak, bu teknolojinin sınırlayıcı bir faktör her istenilen değişiklik için yeni litografili ustalar yeniden tasarlamak için gerekliliktir. Deneysel tasarımlardaki değişiklikler, yeni ustaların zaman alan üretimine (birkaç haftaya kadar) neden olabilir ve böylece deneyler geciktirilebilir. Buna karşılık, LIMAP photopatterning fiziksel bir ana gerektirmez; mikro desenlerin istenilen geometrilerini değişen araştırma sorularına esnek bir şekilde uyarlamak için kullanılabilecek yazılım tarafından oluşturulan desen şablonları kullanır. LIMAP aynı mikro-desen içinde protein gradyanları oluşturmak için de kullanılabilir (Şekil 8), hangi mikrotemas baskı kullanarak tekrarlanabilir bir şekilde elde etmek zordur47.
Ayrıca, LIMAP ile elde edilen mikro desen çözünürlüğü, bizim durumumuzda 2 μm ‘dir (Şekil 6B).
Bu çözünürlüğe yaklaşırken, desen içi ve inter-detektifi arttı. 10 μm genişliğinde veya üzerinde desenler üretmek son derece tekrarlanabilirdi (Şekil 6G,H). Tam tersine, mikrotemas baskısı ile sürekli olarak 10 μm’nin altındaki çözünürlükleri elde etmek zordur ve küçük özellikleri damgalarken (veriler gösterilmez) eserler bulmak yaygındır.
LIMAP’in aynı mikro kuyuiçinde birden fazla proteini(Şekil 9)mikro-desenlemede kullanılabileceğini ve deneylere daha fazla karmaşıklık düzeylerinin eklenmesini sağladığını gösterdik. Bu mikrotemas baskı ile elde edilebilir olsa da, yüksek hassasiyet ile farklı proteinlerin hizalanması teknik olarak oldukça zorlu olabilir. LIMAP kullanılarak birden fazla proteinin desenlenmesi doğrudan ileri ye dönük görünse de, proteinlerin sıralı kaplama prosedürleri ile çapraz bağlanmasının reaktiflerin bloke edilmesi yle azaltılabildiği, ancak tamamen ortadan kaldırılamayacağı ndan bahsetmek gerekir(Şekil 9).
Bir veya diğer tekniğin maliyeti ile ilgili olarak, LIMAP burada açıklandığı gibi mikro-desenleme ekipman (PRIMO) farklı floresan mikroskoplar üzerine monte edilebilir ve motorlu sahne gerektirir satın gerektirir. Bu yatırım başlangıçta maliyet yoğun olmasına rağmen, LIMAP ile ilişkili uzun vadede sarf malzemeleri (şablonlar, PEG ve PLPP) dışında ek satın alma lar yoktur. Alternatif olarak, PDMS şablonları da yayınlanan protokolleri18,32aşağıdaki kendi deneyci tarafından laboratuvarda üretilebilir. Mikrotemas baskı için en büyük maliyetler, denemeler yeni desenler gerektiriyorsa önemli hale gelebilen yeni ustaların üretimiyle ilişkili olabilir.
LIMAP bir dezavantajı bu tekniğin nispeten düşük iş bölümü yaklaşımıdır. Microcontact baskı, LIMAP ile gerekli sıralı lazer mikro desenleme ile karşılaştırıldığında, aynı anda damgalama adımlarında çok sayıda mikro desen üretebilir. Örneğin, PDMS pulları (pul hazırlama hariç) kullanılarak mikrotemas baskı ile yaklaşık 2 saat içinde 6 damgalı cam kapak lar üretmek mümkündür; limap ile benzer bir alan (6-iyi çanak) desenleme yüzey pasifasyon prosedürü hariç, yaklaşık 4 saat sürer (adım 5.12 açıklanan desen şablonu yapılandırması dikkate alınarak ve Şekil 5Bbakın).
LIMAP teknolojisinin bir diğer hız sınırlayıcı faktörü, geniş alanların desenlendirmesi için gereken uzun aydınlatma süresidir (7,5 mW/mm2 lazerile tasarım birimi başına 30 s). Bu gibi durumlarda, mikrotemas yazdırma tercih edilen bir seçenek olabilir. Yeni kullanılabilir bir fotoğraf başlatıcısı (PLPP jel, Malzeme Tablosu)desenleme için alınan süreyi önemli ölçüde azaltarak, geniş alanlarda yüzlerce mikro örüntünün (8 mm2’yekadar) sadece birkaç dakika içinde üretilmesine olanak sağlayacaktır.
Hücre kültürü için mikro desenleme yüzeyleri dikkate alınması gereken bir diğer önemli faktör, mikrotemas baskı ile elde edilen değişkenliğe kıyasla, farklı deneysel tekrarlar arasında mikro desenlerin tekrarlanabilirliğidir. Örneğin, Şekil 7B,D’de gösterilen grafikler, çok benzer sonuçlara sahip üç bağımsız deneysel tekrarın temsili verileridir (veriler gösterilmez). Deneyimlerimize ve önceki yayınlarımıza dayanarak, bu düzeyde tekrarlanabilirlik48,49,50,51,52mikrotemas baskı ile elde etmek zordur.
Genellikle çok biyouyumlu olmayan3,Limap (PLPP) (PLPP) foto-sensitizers, mühendis ya da fotoğraf duyarlılaştırıcıların kullanımı için özel kimya gerektiren diğer fotoğraf desenleme teknikleri aksine ) biyouyumludur ve hücreler tarafından iyi tolere edilir21; elimizde CAD, DRG nöronlar(Şekil 10),fibroblastlar, epitel hücreleri ve melanom hücreleri (veriler gösterilmedi) dahil olmak üzere çeşitli hücrelerde herhangi bir sitotoksisite yaşamamıştır. LIMAP’in PRIMO kullanımının diğer fotoğraf desenleme tekniklerine kıyasla bir diğer avantajı da fotomaskeye gerek olmamasıdır. Mikrotemas lı baskıya benzer şekilde, yeni fotoğraf maskelerinin istenilen her desen için tasarlanıp üretilmesi gerekir.
Mikrotemas baskı için yukarıda belirtilen tüm sınırlamalar, tekniğin manuel yaklaşım bakın. Ancak, pul yükü ve basınç kontrolü53ile otomatik bir cihaz kullanarak mikrotemas baskının masını ve tekrarlanabilirliğini artırmak mümkündür.
PRIMO kullanarak LIMAP için protokolün temel adımları ve sorunları çözme
Bu protokol sırasında en sık karşılaşılan sorunlardan biri mikro desenler içinde arka plan floresan yüksek düzeyde yaşıyor. Bu genellikle küçük hacimli nedeniyle meydana gelen mikro-kuyuların kuruması nedeniyle olabilir. Bu durumda, PBS kristalleri genellikle ECM desenleri çevreleyen görünür (Şekil 11A).
Protein inkübasyonu sonrası yetersiz veya verimsiz yıkama adımları da arka plan floresan yüksek düzeyde neden olabilir. Bu durum özellikle 10 μg/mL(Şekil 11B)veya daha yüksek protein konsantrasyonları kullanılarak görülebilir. Arka planda protein fazlalığı PBS ile ek yıkama adımları dahil edilerek azaltılabilir.
Her deneyde protein arka planının varlığı ölçülmeli ve karakterize edilmelidir, arka plan floresan yoğunluğu(Şekil 6E) hesaplanır ve mikro-desen yoğunluğundan çıkarılmalıdır (Şekil 6F-H ve Şekil 7B,D). Yüksek protein arka plan ek ve CAD hücrelerinin filizlenme bir etkisi olabilir, sonuçların yorumlanması ödün.
Tasarım birimleri arasında boşluklar olması, kullanıcıların desenler arasında yetersiz çakışma sonucu ortaya çıkan sınırlı deneyime(Şekil 11B)sahip olması sık karşılaşılan bir sorundur. Leonardo yazılımındaki iki parametre bunun üstesinden gelmek için ayarlanabilir: 1) desenin tasarımına bağlı olarak sütunlar arasında negatif bir boşluk gerekebilir (adım 5.7 ve bkz. Şekil 5B,C). Alternatif olarak, 2) sütunları dikmek için Uzman menüsündeki degrade seçeneğini kullanın. En uygun aralık parametrelerini belirlemek için hızlı bir test UV yapıştırıcı(Tablo Malzemeler)kullanılarak yapılabilir. Bu yapıştırıcıküçük bir damla daha sonra bir film yapma, bir cam kapak ile kaplıdır bir cam slayt, uygulanır. Gömülü UV yapıştırıcısı, düşük lazer dozu (30 mJ/mm2)kullanılarak ilgi desen şablonu ile fotopatlanır. Gömülü yapıştırıcının UV maruz kalan bölgeleri tedavi edilse de parlak alan mikroskobu altında görünür hale gelecektir. Test sonuçları, desen içinde elde edilen aralığı değerlendirmek için görselleştirilmiştir. Nöronal deneylerimizde, çizgiler arasındaki bir boşluk hücre davranışını olumsuz yönde etkileyebilir ve büyüme dinamiklerinde (azalmış hız veya yolun terk edilmesi) farklılıklar alabilirsiniz.
Leonardo yazılımının en son güncellemesinde (yayın sırasında, Leonardo 4.11), mikro-kuyu yüzeyinin çok daha büyük bir alanı (20X hedefi kullanılarak 8 mm2’ye kadar) kapsayan daha önce tasarlanmış daha büyük desen şablonlarını yüklemek mümkündür. tasarım birimi başına mevcut 0,1 mm2 ile karşılaştırıldığında, daha küçük tasarım ünitelerinin bir araya dikilmesi gereği ortadan kaldırılır. Tanımlanmamış kenarlar desen oluşturma sırasında lazer odaka ayar eksikliğinden kaynaklanabilir (Şekil 11C). Bu nedenle lazeri kalibre etmek ve desenlemeden önce referans desen adımlarını (bkz. adım 4) gerçekleştirmek çok önemlidir. Kötü tanımlanmış çizgiler, şerit genişliğinde farklılıklara neden olarak akson büyüme dinamiği ile şerit genişliği arasındaki ilişkiyi zorlaştırır. Aksonlar da dağınık kenarları olan şeritler terk eğilimindedir. Ayrıca, kenarlarda değişkenlik de 10-20 μm genişlik veya daha yüksek çizgili baskı bulunabilir, desenlerin merkezi bölgelere göre kenarlarında daha yüksek bir protein içeriği ile sonuçlanan(Şekil 6B,D). Bu kenar efekti, fotodesenleme işlemi sırasında fotoğraf başlatıcısının homojen olmayan bir difüzyonu ile üretilir. Fotosisyon reaksiyonu oksijene bağımlıdır, bu da kenarlarda daha fazla yayılır. Bu kenar efekti, fotodesenleme işlemi sırasında mikro kuyuda bir pipet ile fotoğraf başlatıcısını homojenleştirerek en aza indirilebilir. Ayrıca, yeni bir ticari fotoğraf başlatıcısı (PLPP jel), aynı zamanda kenar efekti azaltabilir (PRIMO sistem destek ekibi, kişisel iletişim).
Birden fazla proteinin mikro-baskı çapraz bağlanmasına neden olabilir(Şekil 9A-D). Bu iki farklı protein için kuluçka adımları arasında spesifik olmayan bağlama siteleri işgal etmek için kullanılan engelleme verimliliği artırarak en aza indirilebilir. Proteinlerin çapraz bağlanması deneysel sonuçların tekrarlanabilirliğini zorlaştırabilir ve her proteinin akson büyüme dinamiklerine ve diğer hücre davranışlarına katkısını belirlemek zor olduğundan, verilerin yanlış yorumlanmasına yol açabilir.
Sonuç
LIMAP kullanılarak sağlanan protokolün PRIMO sisteminin kullanımı yoluyla protein mikro-desenlerinin oluşumunu kolaylaştırdığını umuyoruz. Protokolümüz 2D cam yüzeylerde mikro desenlerin güvenilir bir şekilde nasıl üretilene odaklanılabildiğini odaklarken, diğerleri yumuşak yüzeylerin mikro desenlemeiçin LIMAP’i kullanmanınmümkün olduğunu göstermiştir 54 , ve 3D kültürler için mikroyapılı yüzeyler42. Bu mikro desenler, mikro ortamlarındaki değişikliklere hücresel tepkileri incelemek için çok yönlü bir araç olabilir.
The authors have nothing to disclose.
Bu çalışma BBSRC, EPSRC, MRC ve Wellcome Trust tarafından desteklenir. C.B. laboratuvarı, Manchester Üniversitesi Hücre-Matrix araştırma merkezi Wellcome Trust’ın bir parçasıdır ve Wellcome Trust’ın (hibe numarası 088785/Z/09/Z) çekirdek finansmanı ile desteklenir. Yazarlar, Biyoteknoloji ve Biyolojik Bilimler Araştırma Konseyi (BBSRC) tarafından C.M., K.J. (BB/M020630/1) ve P.A. (BB/P000681/1) ve Mühendislik ve Fizik Bilimleri Araştırma Konseyi (EPSRC) ve Tıp Bakanlığı’na sağlanan fonu kabul etmek istiyor. Araştırma Konseyi (MRC) A.K. Rejeneratif Tıp Doktora Eğitimi Merkezi (EP/L014904/1). Yazarlar yazışmaları ve satış sonrası destek ekibi için Alvéole teşekkür ederim. Yazarlar Peter March ve Roger Meadows Biyogörüntüleme Tesisi, Manchester Üniversitesi’nden mikroskop ile yardım için teşekkür ederiz. Bu çalışmada kullanılan Biyogörüntüleme Tesisi mikroskopları BBSRC, Wellcome Trust ve University of Manchester Strategic Fund’dan hibe lerle satın alınmıştır.
Alexa 488 protein labeling kit | Invitrogen | A10235 | Working concentration: N.A. |
Alexa 647 protein labeling kit | Invitrogen | A20173 | Working concentration: N.A. |
CAD cells | ECACC | 8100805 | Working concentration: N.A. |
Conjugated fibrinogen-488 | Molecular Probes | F13191 | Working concentration: 10 μg/ml |
DMEM culture medium | Gibco | 11320033 | Working concentration: N.A. |
Epifluorescence Microscope** | Nikon | Eclipse Ti inverted | Working concentration: N.A. |
Fibronectin | Sigma | F4759 | Working concentration: 10 μg/ml (after labelling with Alexa 488 protein labeling kit, see above) (diluted in PBS) |
Fiji-Image J | www.imagej.nih.gov | Version 2.0.0-rc-54/1.51f | Working concentration: N.A. |
Fluorescent highlighter | Stabilo | Stabilo Boss Original | Working concentration: N.A. |
HEPES | Gibco | 15630080 | Working concentration: 1M |
Inkscape software | Inkscape | Check last update | Working concentration: N.A. |
Laminin-red fluorescent rhodamine | Cytoskeleton, Inc. | LMN01 | Working concentration: 10 μg/ml (diluted in PBS) |
Leonardo software | Alvéole | version 4.11 | Working concentration: N.A. |
L-Glutamine | Sigma | G7513 | Working concentration: 1% |
Micro-manager software | Open imaging | Check last update | Working concentration: N.A. |
Motorized x/y stage | PRIOR Scientific | Proscan II | Working concentration: N.A. |
NIS Elements Software | Nikon | NIS Elements AR 4.60.00 64-bit (With Nikon jobs) | Working concentration: N.A. |
PBS (without Ca2+, Mg2+) | Sigma | D8537 | Working concentration: 1X |
PDMS Stencils | Alvéole | visit www.alveolelab.com | Working concentration: N.A. |
PEG-SVA | Laysan bio, Inc. | MPEG-SVA-5000-1g | Working concentration: 50 mg/ml |
Phalloidin 405 | Abcam | ab176752 | Working concentration: 1:1000 |
Photo-initiator (PLPP) | Alvéole | Classic PLPP | Working concentration: 14.5 mg/ml |
Photo-initiator (PLPP gel) | Alvéole | PLPP gel | Working concentration: 4.76% diluted in ethanol |
Plasma cleaner | Harrick Plasma | PDC-32G (115V) | PDC-32G-2 (230V) | Working concentration: N.A. |
PLL-PEG | SuSoS (also distributed by Alvéole) | www.alveolelab.com | Working concentration: 0.1 mg/ml (diluted in PBS) |
Poly-L-Lysine | Sigma | P4707 | Working concentration: 0.01% |
Primo equipment | Alvéole | www.alveolelab.com | Working concentration: N.A. |
Pen/Strep | Thermo Fisher | 15140122 | Working concentration: 1% |
Tubulin anti-alpha antibody | Abcam | DM1A | Working concentration: 1:1000 CAD cells |
Tubulin anti-beta 3 antibody | Sigma | T8660 | Working concentration: 1:500 DRG neurons |
UV adhesive | Norland Products | NOA81 | Working concentration: N.A. |
1 well glass bottom dish | Cellvis | D35-20-1.5-N | Working concentration: N.A. |
6 well glass bottom dish | Cellvis | P06-20-1.5-N | Working concentration: N.A. |
20x objective** | Nikon | no phase ring (check updated catalogue) | Working concentration: N.A. **Epifluorescence microscope: images were acquired and patterns were generated on an Eclipse Ti inverted microscope (Nikon), coupled to PRIMO micro-patterning equipment (Alvéole), using a 20x objective (0.75 S Plan Fluor (nophasering, Nikon). Nikon specific filter sets for GFP, mCherry and Cy5 were used and fluorescent light source was LED (Lumencor) although other fluorescence sources and filter sets can be used. The microscope has an automated x/y stage (PRIOR Scientific) for the printing of multi-field patterning and Nikon Perfect Focus to prevent focus drift. The images were collected using a Retiga R6 (Q-Imaging) camera. |