Le malattie umane complesse possono essere difficili da modellare nei sistemi di modelli di laboratorio tradizionali. Qui, descriviamo un approccio chirurgico per modellare la malattia muscolare umana attraverso il trapianto di biopsie muscolari scheletriche umane in topi immunodeficienti.
Gli effetti del trattamento osservati negli studi sugli animali spesso non vengono riassunti negli studi clinici. Mentre questo problema è multiforme, uno dei motivi di questo fallimento è l’uso di modelli di laboratorio inadeguati. È difficile modellare malattie umane complesse negli organismi di laboratorio tradizionali, ma questo problema può essere aggirato attraverso lo studio degli xenografi che si possono fare attraverso l’uomo. Il metodo chirurgico che descriviamo qui permette la creazione di xenogratti muscolari scheletrici umani, che possono essere utilizzati per modellare la malattia muscolare e per effettuare test terapeutici preclinici. In base a un protocollo approvato dall’IRB (Institutional Review Board), i campioni muscolari scheletrici vengono acquisiti dai pazienti e poi trapiantati in topi ospiti NOD-Rag1nullIL2r . Questi topi sono ospiti ideali per gli studi di trapianto a causa della loro incapacità di fare linfociti maturi e sono quindi in grado di sviluppare risposte immunitarie adattative mediate dalle cellule e morali. I topi ospiti sono anestetizzati con isoflurane e i muscoli del tibialis anteriore ed estensore del digitalum vengono rimossi. Un pezzo di muscolo umano viene quindi collocato nello scomparto tibiale vuoto e suturato ai tendini prossimali e distali del muscolo longus peroneo. Il muscolo xenotrapianto è spontaneamente vascolarizzato e innervato dall’ospite del topo, risultando in un muscolo umano robustamente rigenerato che può servire come modello per gli studi preclinici.
È stato riferito che solo 13.8% di tutti i programmi di sviluppo di farmaci in fase di sperimentazione clinica hanno successo e portano a terapie approvate1. Mentre questo tasso di successo è superiore al 10,4% precedentemente riportato2, c’è ancora significativo margine di miglioramento. Un approccio per aumentare il tasso di successo degli studi clinici è quello di migliorare i modelli di laboratorio utilizzati nella ricerca preclinica. La Food and Drug Administration (FDA) richiede studi sugli animali per mostrare l’efficacia del trattamento e valutare la tossicità prima degli studi clinici di fase 1. Tuttavia, c’è spesso una concordanza limitata negli esiti del trattamento tra studi sugli animali e studi clinici3. Inoltre, la necessità di studi sugli animali preclinici può essere una barriera insormontabile per lo sviluppo terapeutico in malattie che non hanno un modello animale accettato, che spesso accade per le malattie rare o sporadiche.
Un modo per modellare la malattia umana è trapiantare il tessuto umano in topi immunodeficienti per generare xenografi. Ci sono tre vantaggi principali per i modelli di xenotrapianto: in primo luogo, possono ricapitolare le complesse anomalie genetiche ed epigenetiche che esistono nella malattia umana che potrebbero non essere mai riproducibili in altri modelli animali. In secondo luogo, gli xenografi possono essere utilizzati per modellare malattie rare o sporadiche se sono disponibili campioni di pazienti. In terzo luogo, gli xenogratto modellano la malattia all’interno di un sistema in vivo completo. Per questi motivi, ipotizziamo che i risultati dell’efficacia del trattamento nei modelli di xenotrapianto siano più propensi a tradursi in sperimentazioni in pazienti. Gli xenografi tumorali umani sono già stati utilizzati con successo per sviluppare trattamenti per tumori comuni, tra cui mieloma multiplo, così come terapie personalizzate per singoli pazienti4,5,6, 7.
Recentemente, gli xenogratto sono stati utilizzati per sviluppare un modello di malattia muscolare umana8. In questo modello, i campioni di biopsia muscolare umana vengono trapiantati negli arti posteriori di topi NRG immunodeficienti per formare xenografi. Le miofibre umane trapiantate muoiono, ma le cellule staminali muscolari umane presenti nello xenotrapianto successivamente si espandono e si differenziano in nuove miofibre umane che ripopolano la lamina basale umana innestata. Pertanto, le miofibre rigenerate in questi xenotrapianto sono interamente umane e vengono spontaneamente vascolarizzate e innervate dall’ospite del topo. è importante sottolineare che il fascio, la distrofia muscolare scapopulohumerale (FSHD) del tessuto muscolare del paziente trapiantato nei topi ricapitola le caratteristiche chiave della malattia umana, vale a dire l’espressione del fattore di trascrizione DUX4 8. La FSHD è causata dalla sovraespressione del DUX4, che è epigeneticamente silenziato nel tessuto muscolare normale9,10. Nel modello xenotrapianto FSHD, il trattamento con un morfolino specifico del DUX4 ha dimostrato di reprimere con successo l’espressione e la funzione di DUX4 e può essere una potenziale opzione terapeutica per i pazienti fsHD11. Questi risultati dimostrano che gli xenogratti muscolari umani sono un nuovo approccio per modellare la malattia muscolare umana e testare potenziali terapie nei topi. Qui, descriviamo in dettaglio il metodo chirurgico per la creazione di xenografi muscolari scheletrici umani in topi immunodeficienti.
Gli xenografi derivati dal paziente sono un modo innovativo per modellare le malattie muscolari e condurre studi preclinici. Il metodo qui descritto per creare xenogratti muscolari scheletrici è rapido, diretto e riproducibile. Gli interventi chirurgici unilaterali possono essere eseguiti in 15-25 minuti, o bilateralmente in 30 a 40 minuti. Gli xenotrapianto bilaterali possono fornire ulteriore flessibilità sperimentale. Per esempio, i ricercatori possono eseguire il trattamento localizzato di uno xenotrapianto, con l’…
The authors have nothing to disclose.
Questo lavoro è stato sostenuto da The Myositis Association e dalla Peter Buck Foundation. Ringraziamo il Dr. Yuanfan e sprondin per aver condiviso la sua esperienza e la sua formazione nella tecnica chirurgica dello xenotrapianto.
100 mm x 15 mm Petri dish | Fisher Scientific | FB0875712 | |
2-Methylbutane | Fisher | O3551-4 | |
20 x 30 mm micro cover glass | VWR | 48393-151 | |
Animal Weighing Scale | Kent Scientific | SCL- 1015 | |
Antibiotic-Antimycotic Solution | Corning, Cellgro | 30-004-CI | |
AutoClip System | F.S.T | 12020-00 | |
Castroviejo Needle Holder | F.S.T | 12565-14 | |
Chick embryo extract | Accurate | CE650TL | |
CM1860 UV cryostat | Leica Biosystems | CM1860UV | |
Coplin staining jar | Thermo Scientific | 19-4 | |
Dissection Pins | Fisher Scientific | S13976 | |
Dry Ice – pellet | Fisher Scientific | NC9584462 | |
Embryonic Myosin antibody | DSHB | F1.652 | recommended concentration 1:10 |
Ethanol | Fisher Scientific | 459836 | |
Fetal Bovine Serum | GE Healthcare Life Sciences | SH30071.01 | |
Fiber-Lite MI-150 | Dolan-Jenner | Mi-150 | |
Forceps | F.S.T | 11295-20 | |
Goat anti-mouse IgG1, Alexa Fluor 488 | Invitrogen | A-21121 | recommended concentration 1:500 |
Goat anti-mouse IgG2b, AlexaFluor 594 | Invitrogen | A-21145 | recommended concentration 1:500 |
Gum tragacanth | Sigma | G1128 | |
Hams F-10 Medium | Corning | 10-070-CV | |
Histoacryl Blue Topical Skin Adhesive | Tissue seal | TS1050044FP | |
Human specific lamin A/C antibody | Abcam | ab40567 | recommended concentration 1:50-1:100 |
Human specific spectrin antibody | Leica Biosystems | NCLSPEC1 | recommended concentration 1:20-1:100 |
Induction Chamber | VetEquip | 941444 | |
Iris Forceps | F.S.T | 11066-07 | |
Irradiated Global 2018 (Uniprim 4100 ppm) | Envigo | TD.06596 | Antibiotic rodent diet to protect again respiratory infections |
Isoflurane | MWI Veterinary Supply | 502017 | |
Kimwipes | Kimberly-Clark | 34155 | surgical wipes |
Mapleson E Breathing Circuit | VetEquip | 921412 | |
Methanol | Fisher Scientific | A412 | |
Mobile Anesthesia Machine | VetEquip | 901805 | |
Mouse on Mouse Basic Kit | Vector Laboratories | BMK-2202 | mouse IgG blocking reagent |
Nail Polish | Electron Microscopy Sciences | 72180 | |
NAIR Hair remover lotion/oil | Fisher Scientific | NC0132811 | |
NOD-Rag1null IL2rg null (NRG) mice | The Jackson Laboratory | 007799 | 2 to 3 months old |
O.C.T. Compound | Fisher Scientific | 23-730-571 | |
Oxygen | Airgas | OX USPEA | |
PBS (phosphate buffered saline) buffer | Fisher Scientific | 4870500 | |
Povidone Iodine Prep Solution | Dynarex | 1415 | |
ProLong™ Gold Antifade Mountant | Fisher Scientific | P10144 (no DAPI); P36935 (with DAPI) | |
Puralube Ophthalmic Ointment | Dechra | 17033-211-38 | |
Rimadyl (carprofen) injectable | Patterson Veterinary | 10000319 | surgical analgesic, administered subcutaneously at a dose of 5mg/kg |
Scalpel Blades – #11 | F.S.T | 10011-00 | |
Scalpel Handle – #3 | F.S.T | 10003-12 | |
Stereo Microscope | Accu-scope | 3075 | |
Superfrost Plus Microscope Slides | Fisher Scientific | 12-550-15 | |
Suture, Synthetic, Non-Absorbable, 30 inches long, CV-11 needle | Covidien | VP-706-X | |
1ml Syringe (26 gauge, 3/8 inch needle) | BD Biosciences | 329412 | |
Trimmer | Kent Scientific | CL9990-KIT | |
Vannas Spring Scissors, 8.0 mm cutting edge | F.S.T | 15009-08 | |
VaporGaurd Activated Charcoal Filter | VetEquip | 931401 | |
Wound clips, 9 mm | F.S.T | 12022-09 |