Summary

RNA足迹的识别:通过RNA免疫沉淀在串联中的蛋白质复合物,然后测序(RIPiT-Seq)

Published: July 10, 2019
doi:

Summary

在这里,我们提出一个协议,以丰富内源RNA结合位点或”足迹”的RNA:蛋白质(RNP)复合物从哺乳动物细胞。这种方法涉及RNP亚单位的两个免疫沉淀,因此被称为RNA免疫沉淀串联(RIPiT)。

Abstract

RNA免疫沉淀串联(RIPiT)是一种在RNA:蛋白(RNP)复合物内丰富一对蛋白质的RNA足迹的方法。RIPiT 采用两个纯化步骤。首先,标记的RNP亚单位的免疫沉淀后是轻度RNase消化和随后的非变性亲和洗脱。另一个RNP亚单位的第二次免疫沉淀允许扩充定义的复合物。在RNA和蛋白质变性后,RNA足迹被转换成高通量的DNA测序库。与更流行的紫外线 (UV) 交联后免疫沉淀 (CLIP) 方法以丰富 RBP 结合位点不同,RIPiT 是紫外线交联独立。因此,RIPiT可应用于RNA相互作用中存在的众多蛋白质,这些蛋白质对RNA调控至关重要,但不直接接触RNA或紫外线交联,与RNA接触不良。RIPiT 中的两个纯化步骤提供了另一个优势,用于识别感兴趣的蛋白质与另一个共同因子合作作用的结合位点。双重纯化策略也有助于通过限制背景来增强信号。在这里,我们提供了一个逐步的过程来执行RIPiT,并从分离的RNA足迹生成高通量测序库。我们还概述了 RIPiT 的优势和应用,并讨论了它的一些局限性。

Introduction

在细胞内,RNA与蛋白质复合体存在,形成RNA:蛋白质复合物(RNPs)。RNPs围绕RNA结合蛋白(RBPs,那些直接结合RNA的蛋白质)进行组装,但也包括非限制性核糖核酸(那些结合RPS但非RNA的),并且在性质上通常是动态的。RP 及其辅助因素在 RnP 中共同发挥作用,以执行监管职能。例如,在无意义介导的mRNA衰变(NMD)通路中,UPF蛋白(UPF1、UPF2和UPF3b)识别过早终止的核糖体。每个UPF蛋白都可以与RNA结合,但只有当它们聚集在一起时,活性NMD复合物才会开始形成。在这个复合体中,UPF1通过非RBP SMG1进一步通过磷酸化激活,这种UPF1激活最终导致mRNA衰变诱导因子1招募,2。在此示例中,RBP 需要非 RBP 辅助因素来招募和激活触发 NMD 的 RNP 复合物。然而,RnPs的另一个属性是它们的组成异质性。考虑存在于不同E、A、B或C复合物中的拼接体。不同的拼接体复合物具有重叠和不同的蛋白质3。为了研究RNP功能,必须阐明哪些RNA被RBP及其相关蛋白质所束缚。有许多方法可以实现它,每种方法都有其明显的优点和缺点4,5,6,7

广泛流行的方法来识别RBP结合位点 – 交联后免疫沉淀(CLIP)及其各种变异 – 依靠紫外线(UV)光将RBP与RNA8交联。然而,对于RNP中不直接接触RNA的非RRNA,这不是一种有效的方法。在这里,我们描述了一种适用于RSP和非限制性商业惯例的替代方法,用于分离和识别其RNA结合位点。这种方法称为RNA免疫沉淀串联(RIPiT)由两个免疫沉淀步骤组成,与单个纯化相比,这有助于实现更高的特异性(图1)9,10。与 CLIP 相比,单个免疫沉淀 (IP) 步骤可以以较低的严格性执行,因此 RIPiT 不依赖于在免疫沉淀期间能够承受强洗涤剂存在的抗体的可用性。RIPiT最独特的优势是能够以两个不同的纯化步骤靶向两种不同的蛋白质;这提供了一个强大的方法来丰富一个成分独特的RNP复合物从其他类似的复合物11。

对 RIPiT 程序的微小变化可以进一步增强 RNP 富集性。例如,RNA-蛋白质或蛋白质-蛋白质-蛋白质在RNPs内的一些相互作用是暂时的,可能难以有效地纯化这种复合物的足迹。为了稳定这种相互作用,在细胞裂解和RIPiT之前,RNPs可以在细胞内与甲醛交联。例如,我们观察到,外子结复合体 (EJC) 核心因子 EIF4AIII 和 EJC 拆解因子之间的弱相互作用,PYM12可以通过甲醛处理来稳定,以便更多 RNA 足迹得到丰富(数据不如图所示)。在细胞收获和RIPiT之前,细胞也可以用药物治疗,以稳定或丰富特定状态的RNP。例如,在研究在翻译过程中从mRNA中去除的蛋白质(例如,EJC 13,UPF114)时,使用翻译抑制剂(如紫霉素、环霉素或哈林托宁)进行治疗可导致增加的占用率。RNA上的蛋白质。

从RIPiT中恢复的RNA量通常较低(0.5-10 pmoles,即10-250 ng RNA,考虑到平均RNA长度为75 nt)。主要原因是,只有一小部分特定蛋白质与RNPs内的其他蛋白质复合存在(第一步中任何”自由”蛋白IP在第二个IP期间丢失)。为了从这个RNA生成RNA-Seq库,我们在此还概述了以前发布的协议,适用于这种低RNA输入15,16(图2),在3中产生高通量测序就绪样品。天。

Protocol

1. 建立稳定的 HEK293 细胞系,表达四环素诱导 FLAG 标记感兴趣的蛋白质 (POI) 种子 HEK293 细胞具有一个稳定增长的 Flp 重组靶 (FRT) 位点,在生长培养基的密度为 10 x 104细胞/mL(Dulbeco 的改性 Eagle 的培养基 [DMEM] = 10% 胎儿牛血清 [FBS] = 1% 青霉素-链球菌素 [penn/链球菌]井板。允许细胞在37°C和5%CO2(所有后续步骤的标准生长条件)的加湿培养箱中一夜之间生长。 第二天,细胞应为+70…

Representative Results

成功的RIPiT将导致感兴趣的蛋白质和其他已知相互作用蛋白的免疫沉淀,并且不存在非相互作用的蛋白质。如图3 A所示,在RIPiT洗脱中检测到马戈和EIF4AIII,但HNRNPA1没有(通道6)。同时,通过自光成像(图3B)或生物分析仪(图3C)检测出与RNP复合物共同纯化的RNA足迹。Puromycin治疗有望增加EJC对RNA的占用率,?…

Discussion

在这里,我们将讨论一些成功执行 RIPiT 的关键注意事项。首先,必须优化单个 IP,以便在每个步骤中实现尽可能高的效率。此处描述的输入细胞的FLAG agarose 珠子的量已被证明对于我们测试过的各种蛋白质是可靠的。由于只有一小部分伙伴蛋白与 FLAG 蛋白共同免疫,因此高效第二 IP 所需的抗体量通常较低(小于 10 μg)。小规模的RIPiT(从一个10厘米的板)然后西方印版验证蛋白质在每个部分在两个免疫沉淀步…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了NIH赠款GM120209(GS)的支持。作者感谢OSUCCC基因组共享资源核心的服务(CCC支持赠款NCI P30 CA16058)。

Materials

Anti-FLAG Affinity Gel Sigma A2220
ATP, [γ-32P]- 3000Ci/mmol 10mCi/ml EasyTide, 250µCi PerkinElmer BLU502A250UC
BD Disposable Syringes with Luer-Lok Tips (200) Fisher 14-823-435
Betaine 5M Sigma B0300
biotin-dATP TriLink N-5002
biotin-dCTP Perkin Elmer NEL540001EA
Branson Sonifier, Model SSE-1 Branson
CircLigase I VWR 76081-606 ssDNA ligase I
DMEM, High Glucose ThermoFisher 11995-065
DNA load buffer NEB NEB
Dynabeads Protein A LifeTech 10002D
Flp-In-T-REx 293 Cell Line ThermoFisher R78007
GeneRuler Low Range DNA Ladder ThermoScientific FERSM1203
Hygromycin B ThermoFisher 10687010
Mini-PROTEAN TBE Gel 10 well Bio-Rad 4565013
Mini-PROTEAN TBE-Urea Gel Bio-Rad 4566033
miRCAT-33 adapter 5′-TGGAATTCTCGGGTGCCAAGGddC-3′ Any this protocol is only compatible with the Illumina sequencing platform
Mirus transIT-X2 transfection reagent Mirus MIR 6004
Mth RNA ligase NEB E2610S
PE1.0 5′-AATGATACGGCGACCACCGAGATCTACACT
CTTTCCCTACACGACGCTCTTCCGATC*T-3′
Any this protocol is only compatible with the Illumina sequencing platform
PE2.0 5′-CAAGCAGAAGACGGCATACGAGATCGGTCTC
GGCATTCCTGCTGAACCGCTCTTCCGATC*T-3′
Any this protocol is only compatible with the Illumina sequencing platform
Phenol/Chloroform/Isoamyl Alcohol (25:24:1, pH 6.7, 100ml) Fisher BP1752I-100
Purple Gel Loading Dye (6x) NEB NEB #7025
Q5 DNA Polymerase NEB M0491S/L
RNase I, E. coli, 1000 units Eppicenter N6901K
SPIN-X column Corning CLS8160-24EA
Streptavidin beads ThermoFisher 60210
Superscript III (SSIII) ThermoScientific 18080044 reverse transcriptase enzyme
SybrGold ThermoFisher S11494 gold nucleic acid gel stain
T4 Polynucleotide Kinase-2500U NEB M0201L
T4RNL2 Tr. K227Q NEB M0351S
Tetracycline Sigma 87128
Thermostable 5´ App DNA/RNA Ligase NEB M0319S
TruSeq_SE1 5′-pGGCACTANNNNNAGATCGGAAGA
GCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC
TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE10 5′-pGGTGTTCNNNNNAGATCGGAAG
AGCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCT
CTTCCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE11 5′-pGGTAAGTNNNNNAGATCGGAA
GAGCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC
TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE12 5′-pGGAGATGNNNNNAGATCGGAAGA
GCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC
TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE2 5′-pGGGTAGCNNNNNAGATCGGAAGAG
CGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCT
CTTCCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE35′-pGGTCGATNNNNNAGATCGGAAG
AGCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCT
CTTCCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE4 5′-pGGCCTCGNNNNNAGATCGGAAGA
GCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC
TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE5 5′-pGGTGACANNNNNAGATCGGAAGA
GCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTC
TTCCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE6 5′-pGGTAGACNNNNNAGATCGGAAGAG
CGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTCTTC
CGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE7 5′-pGGGCCCTNNNNNAGATCGGAAG
AGCGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTCT
TCCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE8 5′-pGGATCGGNNNNNAGATCGGAAGAG
CGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTCTT
CCGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
TruSeq_SE9 5′-pGGACTGANNNNNAGATCGGAAGAG
CGTCGTGTAGGGAAAGAGTGT-SPACER 18-CTCGGCATTCCTGCTGAACCGCTCTTC
CGATCTCCTTGGCACCCGAGAATTCCA-3′
Any this protocol is only compatible with the Illumina sequencing platform
Typhoon 5 Bimolecular Imager GE Healthcare Life Science 29187191

Referenzen

  1. Karousis, E. D., Nasif, S., Mühlemann, O. Nonsense-mediated mRNA decay: novel mechanistic insights and biological impact. Wiley Interdisciplinary Reviews: RNA. 7 (5), 661-682 (2016).
  2. Ivanov, P. V., Gehring, N. H., Kunz, J. B., Hentze, M. W., Kulozik, A. E. Interactions between UPF1, eRFs, PABP and the exon junction complex suggest an integrated model for mammalian NMD pathways. The EMBO Journal. 27 (5), 736-747 (2008).
  3. Papasaikas, P., Valcárcel, J. The Spliceosome: The Ultimate RNA Chaperone and Sculptor. Trends in Biochemical Sciences. 41 (1), 33-45 (2016).
  4. Jensen, K. B., Darnell, R. B. CLIP: Crosslinking and ImmunoPrecipitation of In Vivo RNA Targets of RNA-Binding Proteins. Methods in Molecular Biology. 488, 85-98 (2008).
  5. Garzia, A., Morozov, P., Sajek, M., Meyer, C., Tuschl, T. PAR-CLIP for Discovering Target Sites of RNA-Binding Proteins. mRNA Decay: Methods and Protocols. 1720, 55-75 (2018).
  6. Konig, J., et al. iCLIP – Transcriptome-wide Mapping of Protein-RNA Interactions with Individual Nucleotide Resolution. Journal of Visualized Experiments. (50), e2638 (2011).
  7. Sibley, C. R. Individual Nucleotide Resolution UV Cross-Linking and Immunoprecipitation (iCLIP) to Determine Protein-RNA Interactions. RNA Detection: Methods and Protocols. 1649, 427-454 (2018).
  8. Wheeler, E. C., Van Nostrand, E. L., Yeo, G. W. Advances and challenges in the detection of transcriptome‐wide protein-RNA interactions. Wiley Interdisciplinary Reviews: RNA. 9 (1), (2018).
  9. Singh, G., et al. The Cellular EJC Interactome Reveals Higher-Order mRNP Structure and an EJC-SR Protein Nexus. Cell. 151, 750-764 (2012).
  10. Singh, G., Ricci, E. P., Moore, M. J. RIPiT-Seq: A high-throughput approach for footprinting RNA:protein complexes. Methods. 65, 320-332 (2014).
  11. Mabin, J. W., et al. The Exon Junction Complex Undergoes a Compositional Switch that Alters mRNP Structure and Nonsense-Mediated mRNA Decay Activity. Cell Reports. 25 (9), 2431-2446 (2018).
  12. Gehring, N. H., Lamprinaki, S., Kulozik, A. E., Hentze, M. W. Disassembly of Exon Junction Complexes by PYM. Cell. 137 (3), 536-548 (2009).
  13. Dostie, J., Dreyfuss, G. Translation Is Required to Remove Y14 from mRNAs in the Cytoplasm. Current Biology. 12 (13), 1060-1067 (2002).
  14. Zünd, D., Gruber, A. R., Zavolan, M., Mühlemann, O. Translation-dependent displacement of UPF1 from coding sequences causes its enrichment in 3′ UTRs. Nature Structural & Molecular Biology. 20 (8), 936-943 (2013).
  15. Gangras, P., Dayeh, D. M., Mabin, J. W., Nakanishi, K., Singh, G. Cloning and Identification of Recombinant Argonaute-Bound Small RNAs Using Next-Generation Sequencing. Argonaute Proteins: Methods and Protocols. 1680, 1-28 (2018).
  16. Heyer, E. E., Ozadam, H., Ricci, E. P., Cenik, C., Moore, M. J. An optimized kit-free method for making strand-specific deep sequencing libraries from RNA fragments. Nucleic Acids Research. 43 (1), 2 (2015).
  17. Cameron, V., Uhlenbeck, O. C. 3′-Phosphatase activity in T4 polynucleotide kinase. Biochemie. 16 (23), 5120-5126 (1977).
  18. Ricci, E. P., et al. Staufen1 senses overall transcript secondary structure to regulate translation. Nature Structural & Molecular Biology. 21 (1), 26-35 (2014).
  19. Lackner, D. H., et al. A generic strategy for CRISPR-Cas9-mediated gene tagging. Nature Communications. 6, 10237 (2015).
  20. Metkar, M., et al. Higher-Order Organization Principles of Pre-translational mRNPs. Molecular Cell. 72 (4), 715-726 (2018).
  21. Giudice, G., Sánchez-Cabo, F., Torroja, C., Lara-Pezzi, E. ATtRACT-a database of RNA-binding proteins and associated motifs. Database: The Journal of Biological Databases and Curation. 2016, (2016).
  22. Paz, I., Kosti, I., Ares, M., Cline, M., Mandel-Gutfreund, Y. RBPmap: a web server for mapping binding sites of RNA-binding proteins. Nucleic Acids Research. 42, 361-367 (2014).
  23. Sundararaman, B., et al. Resources for the Comprehensive Discovery of Functional RNA Elements. Molecular Cell. 61 (6), 903-913 (2016).

Play Video

Diesen Artikel zitieren
Woodward, L., Gangras, P., Singh, G. Identification of Footprints of RNA:Protein Complexes via RNA Immunoprecipitation in Tandem Followed by Sequencing (RIPiT-Seq). J. Vis. Exp. (149), e59913, doi:10.3791/59913 (2019).

View Video