Summary

从骨骼肌活检程序分离、培养、表征和分化人类肌肉祖细胞

Published: August 23, 2019
doi:

Summary

我们介绍从骨骼肌活检组织获得的分离、培养、特征化和区分人类原发性肌肉祖细胞(hMPCs)的技术。通过这些方法获得和特征化的hMC可用于随后解决与人类肌发生和骨骼肌再生相关的研究问题。

Abstract

使用原始人体组织和细胞是研究生物和生理过程,如骨骼肌再生过程的理想选择。在使用人类原发性成人干细胞,特别是从骨骼肌活检中提取的人类肌肉祖细胞(hMPCs)方面,存在着公认的挑战,包括从采集的组织中产生的细胞产量低和大量供体异质性。不同文化之间的生长和死亡参数。虽然在实验设计中引入异质性需要更大的样本大小来检测显著影响,但它也使我们能够识别在 hMPC 扩展容量中产生可变性的机制,从而使我们能够更好地了解骨骼肌再生的异质性。区分文化扩张能力的新机制有可能导致治疗的发展,以改善骨骼肌再生。

Introduction

骨骼肌是人体最大的器官系统,占全身质量的30-40%。除了在运动中公认的作用外,骨骼肌还维持体温和姿势,并在全身营养平衡中起着核心作用。涉及人类参与者、动物和细胞培养模型的研究对于解决骨骼肌生物学和再生相关问题都很有价值。人类原发性肌肉祖细胞(hMPCs)的分离和培养提供了一个可靠的模型,允许将细胞培养技术和操作应用于人体样本。使用hMPCs的一个优点是,它们保留了每个捐赠者2,3的遗传和代谢表型。维持供体表型使研究人员能够检查造血过程的个体间变异。例如,我们采用了hMPC表征方法,以识别hMPC人口扩容能力4中与年龄和性别相关的差异。

该协议的目的是详细说明分离、培养、表征和区分骨骼肌活检组织的hMPC的技术。在以前描述hMP和识别hMPC隔离5、6的潜在细胞表面制造商的工作的基础上,该协议通过将隔离与hMP的表征联系起来,填补了知识方面的重要空白。此外,该协议中包含的详细分步说明使 hMPC 隔离和特性可供广大科学受众访问,包括以前对 hMPC 经验有限的受众。我们的协议是最早描述使用成像细胞仪来跟踪细胞群的协议之一。新设计的成像细胞仪是最先进的、高通量的和基于微板的,能够在几分钟内对培养容器的每个孔中的所有细胞进行活细胞成像、细胞计数和多通道荧光分析。该系统允许快速量化整个细胞群的增殖和生存能力的动态变化,而对培养的干扰最小。例如,我们能够在体外连续几天对汇合进行客观的汇合测量,以确定从不同捐赠者获得的每个培养物的生长动力学。文献中的许多协议,特别是涉及微量体分的的协议,要求细胞在开始分化或治疗之前达到定义的汇合水平7。我们的方法允许客观地确定文化容器中每个孔的汇合,使研究人员能够以不偏不倚、非主观的方式开始治疗。

过去,使用初级 hMPC 的一个主要限制是低产量,限制了可用于实验的细胞数量。我们和其他人已经表明,骨骼肌活检组织的MPC的收率是每毫克组织1~15个MpCs(图1)8。由于我们的协议允许在用荧光活性细胞分拣(FACS)进行纯化之前对细胞进行四个通道,我们的冷冻hMPC产量来自少量活检组织(50-100毫克),足以满足研究目标,需要多个实验。我们的 FACS 协议产生 ±80% 纯(Pax7 阳性)MPC 总体,因此我们的协议针对产量和纯度进行了优化。

Protocol

该协议得到了康奈尔大学机构审查委员会的批准。对所有参与者进行了基本健康状况筛查,并给予知情同意。 1. 通过骨骼肌活检获得人体肌肉组织 通过触觉、解剖地标和肌肉的主动收缩识别巨大的侧侧肌。 通过让参与者收紧四头肌和找到肌肉的腹部,大约1/3的方式从骨片到臀部,只是腹肌侧向。 使用纸张测量胶带标记一个带手术标记的区域,距离代?…

Representative Results

在图1中可以看到hMPC从人体肌肉组织分离的代表性流细胞学结果。hMC 可以通过首先基于侧散射和正向散射的门控事件来识别,以消除死细胞或碎屑,然后仅选择对 7-AAD 呈负的细胞,因此是可行的。对于细胞表面标记 CD56 和 CD29 选择正的细胞表示 hMPC 总体。60毫克的活检仅提供约75-250 hMPC。 …

Discussion

初级hMPCs是一种重要的研究模型,用于了解骨骼肌生物学和再生过程。此外,hMPC有潜力用于治疗。然而,在研究和治疗中使用原发性hMPCs存在公认的挑战,包括对来自人类的细胞的了解有限10。捐助文化之间的扩展能力也有很大差异,这限制了使用hMPC的可能性,并可能影响研究结果11。例如,最近已经证明,使用该协议中描述的方法分离的hMPCs产生的细胞在扩展?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

作者感谢康奈尔大学生物技术资源中心成像设施对荧光活化细胞分类的帮助。我们还感谢莫莉·盖勒在参与者招募方面的帮助,并感谢埃里卡·本德进行骨骼肌活检。最后,我们感谢与会者的时间和参与。这项工作得到了国家卫生研究院国家老龄研究所的支持,奖励编号为R01AG058630(至B.D.C.和A.E.T.),由格伦医学研究基金会和美国青少年学院老龄研究基金(至B)支持。.华盛顿特区),由康奈尔妇女总统委员会(到A.E.T.)。

Materials

0.25% Trypsin, 2.21 mM EDTA Corning 25-053-Cl Trypsin used for removing adherent hMPCs from cell culture vessels
10 cm cell culture plate VWR 664160 Plates used for culturing hMPCs
15 mL Falcon tube Falcon 352196 15 mL conical tubes used throughout the hMPC isolation and culturing protocols
24 well cell culture plate Grenier Bio-One 662 160 Plates used for culturing hMPCs
7-AAD Viability Staining Solution eBioscience 00-6993-50 Viability stain for identifying living cells during FACS sorting
Alexa Fluor 488 anti-human CD29, Clone: TS2/16 BioLegend 303016 Conjugated antibody for FACS 
Black 96-well cell culture plate Grenier Bio-One 655079 96-well cell culture plate ideal for fluorescent imaging using the Celigo S
Celigo S Nexcelcom Bioscience Imaging cytometer used to track hMPC cultures
Cell Strainer VWR 352350 Cell strainer to eliminate large pieces of debris during muscle biopsy processing
Collagen Type I (Rat Tail) Corning 354236 Collagen for coating cell culture plates 
Collagenase D Roche 11 088 882 001 Used for degradation of collagen and other connective tissue in the skeletal muscle biopsy tissue
Dimethyl Sulfoxide VWR WN182 Used for cryopreservation of hMPCs
Dispase II Sigma Life Sciences D4693 A protease used for enzymatic digestion of skeletal muscle biopsy tissue
Dulbecco's Modified Eagle Medium Low Glucose powder Gibco 31600-034 Low glucose DMEM for muscle biopsy processing
Dulbecco's Phosphate Buffered Saline Gibco 21600-010 PBS for muscle biopsy processing
EDTA Disodium Salt Dihydrate J.T. Baker 4040-01  Required for FACS buffer
Fetal Bovine Serum VWR 89510-186  Fetal bovine serum used for hMPC growth media
Ham's F12 Gibco 21700-026 Base media for hMPCs
Heat Inactivated Equine Serum Gibco 26-050-070 Horse serum used to make hMPC differentiation media
Hemocytometer iNCyto DHC-N0105 Used to count cells
Hibernate A Gibco A1247501 Media for preserving skeletal muscle biopsy tissue
Hoechst 33342, trihydrochloride, trihydrate Life Technologies H21492 DNA stain for identifying all cells using the Celigo S
Isopropanol Fisher Scientific A416P-4 Used for controlled rate freezing of hMPCs
Moxi buffer Orflo MXA006 Buffer for automated cell counter
Moxi Cassettes Orflo MXC002 Cassesttes for automated cell counter
Moxi z Mini Automated Cell Counter Orflo Automated cell counter
Mr. Frosty Freezing Container Thermo Fisher Scientific 5100-0001 Commerically available controlled rate cell freezing container
Normal Goat Serum (10%) Thermo Fisher Scientific 50062Z Goat serum used in FACS buffer
PE-Cy7 Mouse Anti-human CD56 , Clone: B159 BD Pharmingen 557747 Conjugated antibody for FACS 
Penicillin/Streptomycin 100X Solution Corning 30-002-CI Antibiotics added to culture media
Propidium iodide Thermo Fisher Scientific P3566 DNA stain for identifying dead cells using the Celigo S
Recombinant Human basic fibroblast growth factor Promega G5071 Supplement in hMPC growth media to prevent spontaneous differentiation
Recovery Cell Culture Freezing Medium  Gibco 12648-010 Media used to cryoperseve muscle biopsy slurries
Sodium Bicarbonate Fisher Scientific S233-3 Added to Ham's F12
Sterile Round Bottom 5 mL tubes VWR 60818-565 Tubes used for FACS
UltraComp eBeads eBioscience 01-2222-42 Compensation beads fort calibrating flow FACS settings

Referenzen

  1. Janssen, I., Heymsfield, S. B., Wang, Z., Ross, R. Skeletal muscle mass and distribution in 468 men and women aged 18-88 yr. Journal of Applied Physiology. 89 (1), 81-88 (2000).
  2. D’Souza, D. M., et al. Decreased satellite cell number and function in humans and mice with type 1 diabetes is the result of altered notch signaling. Diabetes. 65 (10), 3053-3061 (2016).
  3. Scheele, C., et al. Satellite cells derived from Obese humans with type 2 diabetes and differentiated into Myocytes in vitro exhibit abnormal response to IL-6. PLoS One. 7 (6), e39657 (2012).
  4. Riddle, E. S., Bender, E. L., Thalacker-Mercer, A. E. Expansion capacity of human muscle progenitor cells differs by age, sex, and metabolic fuel preference. American Journal of Physiology: Cell Physiology. 315 (5), C643-C652 (2018).
  5. Charville, G. W., et al. Ex vivo expansion and in vivo self-renewal of human muscle stem cells. Stem Cell Reports. 5 (4), 621-632 (2015).
  6. Alexander, M. S., et al. CD82 Is a Marker for Prospective Isolation of Human Muscle Satellite Cells and Is Linked to Muscular Dystrophies. Cell Stem Cell. 19 (6), 800-807 (2016).
  7. Thalacker-Mercer, A., et al. Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy. Physiological Genomics. 45 (12), 499-507 (2013).
  8. Garcia, S. M., et al. High-Yield Purification, Preservation, and Serial Transplantation of Human Satellite Cells. Stem Cell Reports. 10 (3), 1160-1174 (2018).
  9. Yokoyama, W. M., Thompson, M. L., Ehrhardt, R. O. Cryopreservation and thawing of cells. Current Protocols in Immunology. , (2012).
  10. Bareja, A., Billin, A. N. Satellite cell therapy – from mice to men. Skeletal Muscle. 3 (1), 2 (2013).
  11. Riddle, E. S., Bender, E. L., Thalacker-Mercer, A. Transcript profile distinguishes variability in human myogenic progenitor cell expansion capacity. Physiological Genomics. 50 (10), 817-827 (2018).
  12. Xu, X., et al. Human Satellite Cell Transplantation and Regeneration from Diverse Skeletal Muscles. Stem Cell Reports. 5 (3), 419-434 (2015).

Play Video

Diesen Artikel zitieren
Gheller, B. J., Blum, J., Soueid-Baumgarten, S., Bender, E., Cosgrove, B. D., Thalacker-Mercer, A. Isolation, Culture, Characterization, and Differentiation of Human Muscle Progenitor Cells from the Skeletal Muscle Biopsy Procedure. J. Vis. Exp. (150), e59580, doi:10.3791/59580 (2019).

View Video