Summary

Lentiviral vermittelte Gen-Silencing in humanem Pseudoislet in niedrigen Befestigungsplatten zubereitet

Published: May 14, 2019
doi:

Summary

Ein Protokoll zur Erstellung genmodifizierter menschlicher Pseudoislets aus dispergierten menschlichen Inselzellen, die durch Lentivirus mit kurzer Haarnadel-RNA (shRNA) transduziert werden, wird vorgestellt. Dieses Protokoll verwendet leicht verfügbare Enzym- und Kulturgefäße, kann leicht durchgeführt werden und produziert genetisch veränderte menschliche Pseudoislets, die für funktionelle und morphologische Studien geeignet sind.

Abstract

Verschiedene genetische Werkzeuge stehen zur Verfügung, um Gene in Pankreasinseln von Nagetieren zu modulieren, um die Funktion von Inselgenen für die Diabetesforschung zu sezieren. Die von Nagetierinseln gewonnenen Daten werden jedoch aufgrund bekannter Unterschiede in der Inselstruktur und -funktion zwischen den Arten oft nicht vollständig auf menschlichen Inseln reproduziert oder sind auf sie anwendbar. Derzeit sind Techniken, die zur Verfügung stehen, um die Genexpression menschlicher Inseln zu manipulieren, sehr begrenzt. Die Einführung von Transgen entumlässt durch Adenovirus, Plasmid und Oligonukleotide in intakte Inseln und leidet häufig unter geringer Effizienz und hoher Toxizität. Eine geringe Effizienz ist besonders problematisch in Gendownregulationsstudien an intakten Inselchen, die eine hohe Effizienz erfordern. Es ist bekannt, dass enzymatisch dispergierte Inselzellen sich in kulturbildenden Sphäroiden, die als Pseudoislets bezeichnet werden, neu anaggregieren. Die größengesteuerte Reaggregation menschlicher Inselzellen erzeugt Pseudoislets, die die dynamische Insulinsekretion der ersten Phase nach längerer Kultur aufrechterhalten und ein Fenster zur effizienten Einführung von lentiviraler Kurzhaarnadel-RNA (shRNA) mit geringer Toxizität bieten. Hier wird ein detailliertes Protokoll zur Herstellung menschlicher Pseudoislets nach lentiviraler Transduktion mit zwei handelsüblichen Mehrwellplatten beschrieben. Das Protokoll kann leicht durchgeführt werden und ermöglicht eine effiziente Downregulation von Genen und die Beurteilung der Dynamik der Insulinsekretion mit menschlichen Ischenzellen. So bieten menschliche Pseudoislets mit lentiviral vermittelter Genmodulation ein leistungsfähiges und vielseitiges Modell zur Beurteilung der Genfunktion in menschlichen Inselzellen.

Introduction

Der Verlust der funktionellen Beta-Zellmasse ist die zentrale Pathologie für Typ-1- und Typ-2-Diabetes1. Während Betazellen die Produzenten von Insulin in Pankreasinseln sind, spielt die Kommunikation zwischen Betazellen und Nicht-Beta-Zellen eine entscheidende Rolle bei der Regulierung der Insulinsekretion2. Darüber hinaus trägt die Dysregulation der Glucagon-Sekretion zu Hyperglykämie bei Diabetes3bei. Daher besteht ein starkes Interesse daran, die Genexpression von Zellen innerhalb der Pankreasinseln zu modulieren, um den Mechanismus hinter der Entwicklung von Inselfunktionsstörungen bei Diabetes anzugehen. Es gibt eine Vielzahl von Ansätzen, einschließlich transgener Mäuse, um die Genexpression von Mausinseln zu modulieren. Jedoch, menschliche und Maus-Inseln zeigen deutliche Innervation, Zellverteilung, Verhältnis von Beta-Alpha-Zellen, und Reaktion auf Sekretagogen4. Daher ist die direkte Beurteilung der Genfunktion bei menschlichen Inseln äußerst wichtig für das Verständnis der Pathophysiologie menschlicher Pankreasinseln.

Adenoviraler Vektor ist der am weitesten verbreitete virale Vektor, um Pankreasinseln in vitro zu transducen, da die Transduktion in nicht teilenden Zellen hoch ist. Jedoch, Adenovirus dringt nicht in den Kern der Inselchen effizient, vor allem bei menschlichen Inseln5, und ist zytotoxisch bei hohen Dosen6. Im Vergleich dazu ist der lentivirale Vektor weniger zytotoxisch und liefert exogene Gene dauerhaft in das Chromosom postmitotischer Zellen, was ihn zu einem weithin getesteten Vehikel für die Gentherapiemacht 7. Allerdings ist auch die Fähigkeit des Lentivirus, in den Kern intakter menschlicher Inseln einzudringen, begrenzt, so dass eine partielle Dispersion durch enzymatische Verdauung erforderlich ist, um die Transduktionseffizienz zu erhöhen8. Der Vorbehalt mit der Dispersion intakter menschlicher Inseln ist die Unterbrechung der Zellzell- und Zellmatrixkommunikation, die die dynamische Regulierung der Insulinsekretion beeinträchtigt, die für die Aufrechterhaltung der Glukosehomöostase beim Menschen entscheidend ist9. Daher war es schwierig, die Auswirkungen der Genmodulation auf die dynamische Regulierung der Inselfunktion in einem Modell menschlicher Inselchen zu bewerten.

Es ist bekannt, dass sich zerstreute Inselzellen von menschlichen und Nagetierinseln autonom zu inselähnlichen Strukturen, sogenannten “Pseudoislets”, zusammenschließen. Pseudoislets zeigen Beta- und Nicht-Beta-Zellverteilung ähnlich wie native Inselchen10,11. Zusätzlich verlieren einheimische Inselchen nach langfristiger Kultur nach und nach robuste Sendephase Insulinsekretion5,10,11,12. Dennoch zeigten Pseudoislets eine bessere Konservierung der Insulinsekretion der ersten Phase als Reaktion auf Glukose im Vergleich zu einheimischen Inselchen nach der gleichen Kulturperiode5. Neben einer besseren Konservierung der Insulinsekretion bietet die größengesteuerte Reaggregation menschlicher Isletzellen in niedrigen Anbauplatten11 eine Möglichkeit, Lentivirus-Vektoren vor ihrer Reaggregation in Pseudoislets. Mehrere Studien haben den Nutzen von Pseudoislets in Kombination mit lentiviral vermittelter Transduktion nachgewiesen. Caton et al.13 berichteten, dass die Einführung des grünen fluoreszierenden Proteins (GFP), das Lentivirus ausdrückt, wenig Einfluss auf die Insulinsekretion hatte, während eine homogene Expression von GFP in Rattenpseudoislets im Vergleich zur nicht infizierten Kontrolle erreicht wurde. Sie zeigten auch die spezifische Wirkung verschiedener Connexine auf die Insulinsekretion, indem sie die Connexine 32, 36 und 43 über das Lentivirus13überexzieren. Menschliche Pseudoislets, die mit einer handelsüblichen 96-Well-Ultra-Low-Attachment-Platte hergestellt wurden, zeigten, dass die lentiviral-vermittelte Überexpression des Transkriptionsfaktors SIX3 die Insulinsekretion verbessert, die durch statische Inkubation bewertet wird14. Kürzlich wurden menschliche Pseudoislets, die mit einer 96-well ultra-niedrigen Anbauplatte hergestellt wurden, verwendet, um Glukokkinase über lentivirale Kurzhaarnadel-RNA (shRNA) als Beweis für den Nachweis zu regulieren, dass die glukosestimulierte Insulinsekretion reduziert wird, während KCl-stimulierte Insulinsekretion wurde5erhalten. Die Studie zeigte auch, dass menschliche Pseudoislets nativen Inselchen in Genexpression und sekretoreichen Profilen ähneln, was den Nutzen menschlicher Pseudoislets zur Sezieren der Regulation der Inselfunktion5weiter unterstützt. Obwohl die Perifusion nicht durchgeführt wurde, wurde eine biotechnologische Mikrobrunnen-Kulturplatte, die vor kurzem kommerziell erhältlich war, auch als kompatibel für lentivirale Transduktion und produzierte menschliche Pseudoislets, die ausgezeichnete Insuline Sekretion in vitro und in vivo nach Transplantation11. Zusammen genommen ist die Bildung menschlicher Pseudoislet in Kombination mit der lentiviralen Transduktion ein einfacher und effizienter Ansatz zur Untersuchung der Pathophysiologie der menschlichen Insel und stellt ein wertvolles Werkzeug zur Durchführung mechanistischer Studien an menschlichen Inseln bereit.

Im aktuellen Bericht wird ein Protokoll zur Bildung menschlicher Pseudoislets, die mit Lentivirus über zwei kommerziell erhältliche Plattformen, eine 96-Well ultra-low Attachment Platte und eine Microwell-Kulturplatte transduziert wurden, vorgestellt. Beide erreichen eine effiziente Modulation der Genexpression und schaffen menschliche Pseudoislets, die für nachgelagerte Bewertungen, einschließlich statischer Inkubation und Perifusion, kompatibel sind.

Protocol

Vor Studienbeginn wurde eine Forschungsbestimmung für Humansubjekte durch das Institutional Review Board der University of Iowa getroffen, der feststellte, dass die Studie die Kriterien für die Forschung an menschlichen Probanden nicht erfüllte. Konsultieren Sie vor Beginn der Studie das örtliche Prüfungsgremium, um festzustellen, ob die Quelle der Inselchen und die geplante Studie einer vorherigen Genehmigung bedarf. HINWEIS: Für die Bildung von 192 Pseudoislets in der …

Representative Results

Abbildung 1 zeigt die wichtigsten Schritte bei der Herstellung von Pseudoislets mit einer 96-well ultra-niedrigen Befestigungsplatte und einer Mikrowell-Kulturplatte. Abbildung 2a zeigt sequenzielle Veränderungen in der Morphologie bei der Bildung von Pseudoislets aus 3 x 103 menschlichen Inselzellen in einer 96-well ultraniedrigen Befestigungsplatte. Monolayer oder lose Zellklumpen, die am tag 1 beobachtet wurden, ve…

Discussion

Hier wird ein detailliertes Protokoll zur Erzeugung menschlicher Pseudoislets vorgestellt, die mit einer 96-Well-Ultra-Low-Attachment-Platte oder einer Mikrowell-Kulturplatte durch Lentivirus transduziert werden. Pseudoislets sollen Morphologie und sekretotische Funktionen ähnlich wie einheimische menschliche Inselchen demonstrieren und können über einen längeren Zeitraum in vitrokultiviertwerden 5,11,18. Im Gegensatz zu ein…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

Diese Arbeit wurde von den National Institutes of Health to Y.I. (R01-DK090490) und der American Diabetes Association to Y.I. (1-17-IBS-132) finanziell unterstützt. J.A. und Y.I. werden vom Fraternal Order of Eagles Diabetes Research Center unterstützt. A.B. wird durch ein Stipendium der National Institutes of Health (T32NS45549) unterstützt. Die Autoren nutzten menschliche Pankreasinseln, die vom NIDDK-finanzierten Integrated Islet Distribution Program (IIDP) in City of Hope (2UC4DK098085) bereitgestellt wurden.

Materials

Anti-adherence rinsing solution Stemcell technologies 7919
Biological safety cabinet Thermo Scientific 1300 Series Type A2
cell strainer, 40 micrometer Corning 431750
CMRL-1066 ThermoFisher 11530037
CO2 incubator Thermo Scientific Heracell VIOS 160i
conical centrifuge tube, 15 mL VWR 89039-666
conical centrifuge tube, 50 mL VWR 89039-658
fetal bovine serum ThermoFisher 26140079
guanidinium thiocyanate RNA extraction reagent ThermoFisher 15596026 Trizol
glutamine ThermoFisher 25030164
Hemocytometer Marien Feld Neubauer-Improved Bright line
Human serum albumin Sigma A1653
inverted microscope Fisher brand 11-350-119
microcentrifuge Beckman Coulter Microfuge 20
microcentrifuge tube, 1.5 mL USA Scientific 1615-5500
microwell culture plate Stemcell technologies 34411 Aggrewell 400, 24 well
motor-driven pestle GAMUT #399X644
non-tissue culture treated dish, 10 cm Fisher Scientific FB0875713
PBS ThermoFisher 14190250
Penicillin-streptomycin ThermoFisher 10378016
Petri dish, 35 mm Celltreat 229638
pipette, 5 mL DOT Scientific, 667205B
pipette, 8-channel VWR #613-5253
pipette, 10 mL VWR 667210B
pipette, P10 Denville UEZ-P-10
pipette, P200 Denville UEZ-P-200
pipette, P1000 Denville UEZ-P-1000
proteolytic and collagenolytic enzyme mixture Sigma A6965 Accutase
reagent reservoir, 50 mL VWR 89094-680
reversible strainer, 37 micrometer Stemcell technologies 27251
swing bucket plate centrifuge Beckman Coulter Allegra X-14R
swing bucket rotor Beckman Coulter SX4750A
tuberculin syringe, 1 mL BD 309659
ultra low attachment microplate, 96 well Corning 4515

Referenzen

  1. Chen, C., Cohrs, C. M., Stertmann, J., Bozsak, R., Speier, S. Human beta cell mass and function in diabetes: Recent advances in knowledge and technologies to understand disease pathogenesis. Molecular Metabolism. 6 (9), 943-957 (2017).
  2. Hong, H., Jo, J., Sin, S. J. Stable and flexible system for glucose homeostasis. Physiological Review E covering statistical, nonlinear, biological, and soft matter physic. 88 (3), 032711 (2013).
  3. Cryer, P. E. Minireview: Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes. Endocrinology. 153 (3), 1039-1048 (2012).
  4. Arrojo e Drigo, R., et al. New insights into the architecture of the islet of Langerhans: a focused cross-species assessment. Diabetologia. 58 (10), 2218-2228 (2015).
  5. Harata, M., et al. Delivery of shRNA via lentivirus in human pseudoislets provides a model to test dynamic regulation of insulin secretion and gene function in human islets. Physiological Reports. 6 (20), e13907 (2018).
  6. Barbu, A. R., Akusjarvi, G., Welsh, N. Adenoviral-mediated transduction of human pancreatic islets: importance of adenoviral genome for cell viability and association with a deficient antiviral response. Endocrinology. 146 (5), 2406-2414 (2005).
  7. Hughes, A., et al. Gene therapy to improve pancreatic islet transplantation for Type 1 diabetes mellitus. Current Diabetes Reviews. 6 (5), 274-284 (2010).
  8. Jimenez-Moreno, C. M., et al. A Simple High Efficiency Intra-Islet Transduction Protocol Using Lentiviral Vectors. Current Gene Therapy. 15 (4), 436-446 (2015).
  9. Bonora, E., et al. Prevalence and correlates of post-prandial hyperglycaemia in a large sample of patients with type 2 diabetes mellitus. Diabetologia. 49 (5), 846-854 (2006).
  10. Halban, P. A., Powers, S. L., George, K. L., Bonner-Weir, S. Spontaneous reassociation of dispersed adult rat pancreatic islet cells into aggregates with three-dimensional architecture typical of native islets. Diabetes. 36 (7), 783-790 (1987).
  11. Yu, Y., et al. Bioengineered human pseudoislets form efficiently from donated tissue, compare favourably with native islets in vitro and restore normoglycaemia in mice. Diabetologia. 61 (9), 2016-2029 (2018).
  12. Zuellig, R. A., et al. Improved physiological properties of gravity-enforced reassembled rat and human pancreatic pseudo-islets. Journal of Tissue Engineering and Regenerative Medicine. 11 (1), 109-120 (2017).
  13. Caton, D., et al. Lentivirus-mediated transduction of connexin cDNAs shows level- and isoform-specific alterations in insulin secretion of primary pancreatic beta-cells. Journal of Cell Science. 116 (Pt 11), 2285-2294 (2003).
  14. Arda, H. E., et al. Age-Dependent Pancreatic Gene Regulation Reveals Mechanisms Governing Human beta Cell Function. Cell Metabolism. 23 (5), 909-920 (2016).
  15. Peiris, H., et al. Discovering human diabetes-risk gene function with genetics and physiological assays. Nature Communications. 9 (1), 3855 (2018).
  16. Schlimgen, R., et al. Risks Associated With Lentiviral Vector Exposures and Prevention Strategies. Journal of Occupational and Environmental Medicine. 58 (12), 1159-1166 (2016).
  17. Livak, K. J., Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 25 (4), 402-408 (2001).
  18. Li, N., et al. Engineering islet for improved performance by optimized reaggregation in alginate gel beads. Biotechnology and Applied Biochemistry. 64 (3), 400-405 (2017).
  19. Ramachandran, K., Peng, X., Bokvist, K., Stehno-Bittel, L. Assessment of re-aggregated human pancreatic islets for secondary drug screening. British Journal of Pharmacology. 171 (12), 3010-3022 (2014).
  20. Hilderink, J., et al. Controlled aggregation of primary human pancreatic islet cells leads to glucose-responsive pseudoislets comparable to native islets. Journal of Cellular and Molecular Medicine. 19 (8), 1836-1846 (2015).
  21. Saunders, D. C., et al. Ectonucleoside Triphosphate Diphosphohydrolase-3 Antibody Targets Adult Human Pancreatic beta Cells for In Vitro and In Vivo Analysis. Cell Metabolism. (18), (2018).
  22. Reissaus, C. A., Piston, D. W. Reestablishment of Glucose Inhibition of Glucagon Secretion in Small Pseudoislets. Diabetes. 66 (4), 960-969 (2017).

Play Video

Diesen Artikel zitieren
Liu, S., Harata, M., Promes, J. A., Burand, A. J., Ankrum, J. A., Imai, Y. Lentiviral Mediated Gene Silencing in Human Pseudoislet Prepared in Low Attachment Plates. J. Vis. Exp. (147), e59578, doi:10.3791/59578 (2019).

View Video