Summary

3D打印在深脑刺激植入物毛孔环结构中的应用

Published: September 07, 2019
doi:

Summary

在这里,我们提出一个协议,以演示3D打印在深层脑刺激植入物的构建。

Abstract

自 20 世纪 80 年代以来,3D 打印在医疗领域得到了广泛的应用,特别是在手术中,如术前模拟、解剖学习和外科培训。这增加了使用3D打印来构建神经外科植入物的可能性。我们之前的工作以毛刺孔环的构造为例,描述了使用计算机辅助设计 (CAD)、专业/工程师 (Pro/E) 和 3D 打印机等软件来构建物理产品的过程。即共需要三个步骤,即绘制2D图像、构建毛刺孔环的3D图像,以及使用3D打印机打印毛刺环的物理模型。该协议表明,碳纤维制成的毛刺孔环可以通过三维打印快速准确地成型。表明CAD和Pro/E软件均可用于与临床影像数据集成,构建毛刺孔环,并进一步应用3D打印制作单个耗材。

Introduction

自20世纪80年代以来,3D打印已应用于医学领域,特别是在术前模拟手术、解剖学习和外科培训领域。例如,在脑血管手术中,可以使用3D打印血管模型2进行术前模拟。随着三维打印的发展,可以最大限度地模拟脑血管的质地、温度、结构和重量。受训人员可以进行外科手术,如切割和夹紧此类模型。这种训练是非常重要的外科医生3,4,5。目前,由3D打印形成的钛贴片也逐渐应用了6个,因为经过成像和重建后3D打印开发的头骨假肢具有很强的构同性。然而,3D打印在神经外科的发展和应用仍然有限。

毛刺孔环,作为铅固定装置的一部分,已广泛应用于深脑刺激(DBS)7、8、9、10。然而,目前的毛刺孔环是由医疗器械制造商根据统一的规格和尺寸制造的。此标准毛刺孔环并不总是适合所有条件,如头骨畸形和头皮萎缩。它可能会增加操作的不确定性,减少操作的幅度。3D打印的出现使得在临床场景中为患者开发个性化的毛刺环成为可能。同时,毛刺孔环不易获得,不利于广泛的术前示范和手术训练1。

为了解决上述问题,我们建议使用 3D 打印构建毛刺孔环。我们实验室以前的一项研究描述了星展11的创新毛刺孔环。在这项研究中,这种创新的毛刺孔环将被视为展示详细生产工艺的极好例子。因此,本研究的目的是提供一个建模过程和一个详细的技术过程,使用3D打印建立一个实心毛刺环。

Protocol

1. 绘制毛刺孔环的二维 (2D) 图像 打开 2D 计算机辅助设计 (CAD) 软件,然后创建图形文档。 单击”绘制 |在图形上绘制具有实心线的参照点。单击”修改 ” |偏移,并在命令行中键入特定的偏移距离。 单击对象,按鼠标左键创建实线。单击”修改 ” |修剪,选择要修剪的区域,然后单击额外的行。 以内毛刺孔环为例,根据 CAD 软件?…

Representative Results

通过商用CAD软件构建了三个2D图像视图(参见材料表)。在这些图像中,还添加了实际尺寸和技术要求(图1)。此外,三维数据在 (图2) 中构造,并保存为 STL 格式 (图 3)。如图4所示,固体部件构建在打印机平台上。选取了五组这些部分,计算了绝对误差和误差范?…

Discussion

结果表明,该软件可用于构建毛刺孔环的三维模型(图1图2),3D打印可用于用指定材料构建实体模型(图4)。就固体模型的大小而言,通过 Vernier 卡钳进行的测量,存在从 0 到 0.59 mm 的绝对误差(图6)。在某种程度上,这种错误是不可避免的,因为这种绝对错误来自许多因素,如印刷工具的质量。工业?…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项工作得到了广东省自然科学基金(No.2017A030313597)和南方医科大学(No.LX2016N006,号KJ20161102)。

Materials

Adobe Photoshop Version 14.0 Adobe System,US _ Only available with a paid subscription.
Allcct 3D printer Allcct technology co., LTD, WuHan, China 201807A794124CN
Allcct_YinKe_V1.1 Allcct technology co., LTD, WuHan, China The software is provided by the 3D printer manufacturer and there is no Catalog number associated with it
AutoCAD 2004 Autodesk co., LTD,US 666-12345678 Software for 2D models
Carbon Fibre Allcct technology co., LTD, WuHan, China PLA175Ø5181Ø3ØB The material is provided by the 3D printer manufacturer
Netfabb Studio Basic 4.9 Autodesk co., LTD,US The software is provided by a 3D printer manufacturer and is open to access
Pro/E 2001 Parametric Technology Corporation, PTC, US _ Software for 3D models; Only available with a paid subscription.
Vernier caliper   Beijing Blue Light Machinery Electricity Instrument Co,. LTD, China GB/T 1214.1-1996 

Referenzen

  1. Pucci, J. U., Christophe, B. R., Sisti, J. A., Connolly, E. S. Three-dimensional printing: technologies, applications, and limitations in neurosurgery. Biotechnology Advances. 35 (5), 521-529 (2017).
  2. Mashiko, T., et al. Development of three-dimensional hollow elastic model for cerebral aneurysm clipping simulation enabling rapid and low cost prototyping. World Neurosurgery. 83 (3), 351-361 (2015).
  3. Chae, M. P., et al. Emerging Applications of Bedside 3D Printing in Plastic Surgery. Frontiers in Surgery. 2, 25 (2015).
  4. Doyle, B. J., et al. Improved assessment and treatment of abdominal aortic aneurysms: the use of 3D reconstructions as a surgical guidance tool in endovascular repair. Irish Journal of Medical Science. 178 (3), 321-328 (2009).
  5. Kimura, T., et al. Simulation of and training for cerebral aneurysm clipping with 3-dimensional models. Neurosurgery. 65 (4), 719-725 (2009).
  6. Park, E. K., et al. Cranioplasty Enhanced by Three-Dimensional Printing: Custom-Made Three-Dimensional-Printed Titanium Implants for Skull Defects. Journal of Craniofacial Surgery. 27 (4), 943-949 (2016).
  7. Ray, C. D. Burr-hole ring-cap and electrode anchoring device. Technical note. Journal of Neurosurgery. 55 (6), 1004-1006 (1981).
  8. Yamamoto, T., Katayama, Y., Kobayashi, K., Oshima, H., Fukaya, C. Dual-floor burr hole adjusted to burr-hole ring and cap for implantation of stimulation electrodes. Technical note. Journal of Neurosurgery. 99 (4), 783-784 (2003).
  9. Wharen, R. E., Putzke, J. D., Uitti, R. J. Deep brain stimulation lead fixation: a comparative study of the Navigus and Medtronic burr hole fixation device. Clinical Neurology and Neurosurgery. 107 (5), 393-395 (2005).
  10. Patel, N. V., Barrese, J., Ditota, R. J., Hargreaves, E. L., Danish, S. F. Deep brain stimulation lead fixation after Stimloc failure. Journal of Clinical Neuroscience. 19 (12), 1715-1718 (2012).
  11. Chen, J., et al. 3-D printing for constructing the burr hole ring of lead fixation device in deep brain stimulation. Journal of Clinical Neuroscience. 58, 229-233 (2018).
  12. Hoang, D., Perrault, D., Stevanovic, M., Ghiassi, A. Surgical applications of three-dimensional printing: a review of the current literature & how to get started. Annals of Translational Medicine. 4 (23), (2016).
  13. Bustamante, S., Bose, S., Bishop, P., Klatte, R., Norris, F. Novel application of rapid prototyping for simulation of bronchoscopic anatomy. Journal of Cardiothoracic and Vascular Anesthesia. 28 (4), 1122-1125 (2014).
  14. Lan, Q., et al. Development of Three-Dimensional Printed Craniocerebral Models for Simulated Neurosurgery. World Neurosurgery. 91, 434-442 (2016).
  15. Li, W. Z., Zhang, M. C., Li, S. P., Zhang, L. T., Huang, Y. Application of computer-aided three-dimensional skull model with rapid prototyping technique in repair of zygomatico-orbito-maxillary complex fracture. The International Journal of Medical Robotics. 5 (2), 158-163 (2009).
  16. Wang, L., Cao, T., Li, X., Huang, L. Three-dimensional printing titanium ribs for complex reconstruction after extensive posterolateral chest wall resection in lung cancer. The Journal of Thoracic and Cardiovascular Surgery. 152 (1), e5-e7 (2016).
  17. Xu, N. F., et al. Reconstruction of the Upper Cervical Spine Using a Personalized 3D-Printed Vertebral Body in an Adolescent With Ewing Sarcoma. Spine. 41 (1), E50-E54 (2016).
  18. Brozova, H., Barnaure, I., Alterman, R. L., Tagliati, M. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology. 72 (8), 770 (2009).
  19. Moreau, C., et al. STN-DBS frequency effects on freezing of gait in advanced Parkinson disease. Neurology. 71 (2), 80-84 (2008).
  20. Oyama, G., et al. Unilateral GPi-DBS as a treatment for levodopa-induced respiratory dyskinesia in Parkinson disease. Neurologist. 17 (5), 282-285 (2011).

Play Video

Diesen Artikel zitieren
Chen, J., Chen, X., Lv, S., Zhang, Y., Long, H., Yang, K., Qi, S., Zhang, W., Wang, J. Application of 3D Printing in the Construction of Burr Hole Ring for Deep Brain Stimulation Implants. J. Vis. Exp. (151), e59560, doi:10.3791/59560 (2019).

View Video