Summary

诱导小鼠抑郁行为的慢性固定性压力协议

Published: May 15, 2019
doi:

Summary

本文提供了一个简化和标准化的协议,用于诱导长期固定小鼠的抑郁样行为使用约束剂。此外,还解释了验证抑郁症诱导的行为和生理技术。

Abstract

抑郁症尚未完全了解,但各种因果关系已经报告。最近,抑郁症的患病率有所上升。然而,治疗抑郁症或研究抑郁症是稀缺的。因此,本文提出了运动限制引起的抑郁小鼠模型。慢性轻度压力 (CMS) 是一种众所周知的诱导抑郁行为的技术。然而,它需要一个复杂的程序,由各种轻度应力的组合组成。相反,慢性固定压力 (CIS) 是一种易于获取的慢性应激模型,从约束模型修改,该模型通过限制运动在一定时期内限制运动来诱发抑郁行为。为了评估抑郁样的行为,本实验中结合蔗糖偏好测试(SPT)、尾部悬浮试验(TST)和ELISA测定来测量应力标记皮质酮水平。所述协议说明了CIS的诱导和评价行为和生理因素的变化,以验证抑郁症。

Introduction

重度抑郁症(MDD)是全世界精神残疾的主要原因,其发病率增长快于预期。2001年,世界卫生组织预测,到2020年,MDD将成为世界上第二大常见疾病。然而,它已经是第二最常见的在2013年1。此外,目前的抗抑郁药有许多局限性,包括延迟效果,耐药性,复发,和各种副作用2,3。因此,研究人员必须开发更有效的抗抑郁药。然而,MDD的模糊病理生理学对新型抗抑郁药的发展构成了障碍。

长期压力是MDD的主要危险因素。它可以诱发下丘脑-垂体-肾上腺(HPA)轴功能障碍,这也与MDD病因4,5相关。如前所述,HPA 轴在压力引起的精神病理生理学(包括抑郁和焦虑障碍)中起关键作用,通过增加皮质酮水平6、7、89.许多动物模型都基于 HPA 轴的持续激活,在 MDD4患者中观察到。此外,由慢性压力和皮下注射的糖皮质激素引起的高糖皮质激素会导致抑郁行为以及神经细胞死亡、神经元过程萎缩和啮齿动物大脑中成人神经发生减少10,11.与抑郁症相关的另一个重要大脑区域是前额叶皮质 (mPFC)。mPFC在控制大脑分区域(如下丘脑和杏仁核)中起着至关重要的作用,控制情绪行为和压力反应8,9。例如,背膜mPFC的病变诱发HPA轴功能障碍和增强皮质酮分泌由于约束应力12,13。最近的一项研究还表明,反复约束压力增加皮质酮水平,可以通过谷氨酰胺补充谷氨酰胺在mPFC9神经元和星形细胞之间的谷氨酸-谷氨酰胺循环来降低。

Katz14提出了第一个用于研究MDD病因的慢性应激范式。Willner等人随后根据Katz的发现提出了一个慢性轻度应激(CMS)模型。他们证实,该模型具有预测有效性,通过观察抗抑郁药恢复CMS引起的类人无一样的行为15,16。通常,CMS 模型由各种轻度应力的组合组成,例如轻微噪音、笼子倾斜、湿床上用品、改变的暗箱循环、笼摇、强迫游泳和社会失败。CMS模型被研究者广泛使用;然而,该模型的可复制性较差,而且时间和能效都很低。因此,对诱导抑郁行为和生理分析以评估抑郁症的标准化和简化方案的需求日益增长。与CMS模型相比,慢性固定应力(CIS;也称为慢性约束应激)模型更简单、更高效;因此,CIS模型可以广泛用于慢性应激研究17,18,19,20,21,22,23, 24.此外,CIS可用于雄性小鼠和雌性小鼠,以发展抑郁症行为25,26。在CIS期间,动物被放置在一个适合身体大小的圆柱体中,每天1-8小时,为期2周或4周9,27,28。其中,每天2小时的克制应激状态,持续2周,足以引起小鼠9、28的抑郁行为,疼痛最小。在约束条件下,血液皮质酮水平迅速上升9,28,29。几项研究表明,CIS模型具有预测有效性,证实CIS引起的抑郁症状症状通过抗抑郁药19,20,30,31恢复。在这里,我们报告CIS的详细程序,以及一些在小鼠CIS后的行为和生理结果。

Protocol

所有实验规程和动物护理均按照庆尚国立大学动物研究大学动物护理委员会(GLA-100917-M0093)的指导原则进行。 1. 材料 小 鼠 在产后第7周使用重达22-24克的C57BL/6菌株背景的雄性。在实验前在繁殖室中活动1周。注:所有小鼠都是从实验室动物公司购买的。 在12小时的明/暗周期(早上6点亮灯)下,将小鼠单独在温度控制的活体(22-24°C)中,并可正常使用实验室的会?…

Representative Results

在代表性实验中,所有数据均从每组6-8只小鼠中获取。具有代表性的材料和将鼠标自愿插入约束器的方法如图1所示。 为了在CIS诱导后进行行为测试和血液采样,小鼠接受了如图2A中概述的实验程序。如图2和图3所示,CIS能很好地诱导抑郁样的行为,并释放压力标记皮质酮。此外,这些指标通过?…

Discussion

大脑的复杂性和MDD的异质性使得创建完全重现这种状况的动物模型变得十分困难。许多研究人员已经克服了这一困难,使用内皮内皮型的方法32,其中阿内多尼亚(缺乏兴趣奖励刺激)和绝望被认为是进化保护,在动物模型中可量化的行为,这同样出现在抑郁症患者中33。在本文中,我们提出了一种方法,其中独联体足以引起一种绝望和绝望,表明独联体和MDD之间的翻译相关…

Offenlegungen

The authors have nothing to disclose.

Acknowledgements

这项研究得到了韩国国家科学研究基金会(NRF)基础科学研究计划的支持,该基金会由韩国教育部资助(NRF-2015R1A5A2008833和NRF-2016R1D1A3B03934279)和卫生科学基金会(IHS)资助GNU-2016-02)在庆尚国立大学。

Materials

1 ml disposable syringes Sungshim Medical P000CFDO
Balance A&D Company FX-2000i
Ball nozzle Jeung Do B&P JD-C-88
CCTV camera KOCOM KCB-381
Corticosterone ELISA kits Cayman Chemical
Digital lux meter TES TES-1330A
Ethovision XT 7.1 Noldus Information Technology
Isoflurane HANA PHARM CO., LTD. Ifran solution
Mice Koatech C57BL/6 strain
Restrainer Dae-jong Instrument Industry DJ-428
Saccharose (sucrose) DAEJUNG 7501-4400
Small animal isoflurane anaesthetic system Summit
Acrylic bar The apparatus was made in the lab for TST test
Tail suspension box The apparatus was made in the lab
Timer Electronics Tomorrow TL-2530
Water bottle Jeung Do B&P JD-C-79

Referenzen

  1. Ferrari, A. J., et al. Burden of Depressive Disorders by Country, Sex, Age, and Year: Findings from the Global Burden of Disease Study 2010. PLoS Medicine. 10 (11), (2013).
  2. Trivedi, M. H., et al. Evaluation of outcomes with citalopram for depression using measurement-based care in STAR*D: implications for clinical practice. The American Journal of Psychiatry. 163 (1), 28-40 (2006).
  3. Gartlehner, G., et al. Second-Generation Antidepressants in the Pharmacologic Treatment of Adult Depression: An Update of the 2007 Comparative Effectiveness Review. Second-Generation Antidepressants in the Pharmacologic Treatment of Adult Depression: An Update of the 2007 Comparative Effectiveness Review. [Internet]. , (2011).
  4. Checkley, S. The neuroendocrinology of depression and chronic stress. British Medical Bulletin. 52 (3), 597-617 (1996).
  5. Parker, K. J., Schatzberg, A. F., Lyons, D. M. Neuroendocrine aspects of hypercortisolism in major depression. Hormones and Behavior. 43 (1), 60-66 (2003).
  6. de Kloet, E. R., Joels, M., Holsboer, F. Stress and the brain: from adaptation to disease. Nature Reviews Neuroscience. 6 (6), 463-475 (2005).
  7. McEwen, B. S. Central effects of stress hormones in health and disease: Understanding the protective and damaging effects of stress and stress mediators. European Journal of Pharmacology. 583 (2-3), 174-185 (2008).
  8. Chiba, S., et al. Chronic restraint stress causes anxiety- and depression-like behaviors, downregulates glucocorticoid receptor expression, and attenuates glutamate release induced by brain-derived neurotrophic factor in the prefrontal cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry. 39 (1), 112-119 (2012).
  9. Son, H., et al. Glutamine has antidepressive effects through increments of glutamate and glutamine levels and glutamatergic activity in the medial prefrontal cortex. Neuropharmacology. 143, 143-152 (2018).
  10. Gregus, A., Wintink, A. J., Davis, A. C., Kalynchuk, L. E. Effect of repeated corticosterone injections and restraint stress on anxiety and depression-like behavior in male rats. Behavioural Brain Research. 156 (1), 105-114 (2005).
  11. Woolley, C. S., Gould, E., McEwen, B. S. Exposure to excess glucocorticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Research. 531 (1-2), 225-231 (1990).
  12. Diorio, D., Viau, V., Meaney, M. J. The role of the medial prefrontal cortex (cingulate gyrus) in the regulation of hypothalamic-pituitary-adrenal responses to stress. The Journal of Neuroscience. 13 (9), 3839-3847 (1993).
  13. Figueiredo, H. F., Bruestle, A., Bodie, B., Dolgas, C. M., Herman, J. P. The medial prefrontal cortex differentially regulates stress-induced c-fos expression in the forebrain depending on type of stressor. European Journal of Neuroscience. 18 (8), 2357-2364 (2003).
  14. Katz, R. J. Animal model of depression: Effects of electroconvulsive shock therapy. Neuroscience and Biobehavioral Reviews. 5 (2), 273-277 (1981).
  15. Willner, P., Towell, A., Sampson, D., Sophokleous, S., Muscat, R. Reduction of sucrose preference by chronic unpredictable mild stress, and its restoration by a tricyclic antidepressant. Psychopharmacology. 93 (3), 358-364 (1987).
  16. Slattery, D. A., Cryan, J. F. Modelling depression in animals: at the interface of reward and stress pathways. Psychopharmacology. 234 (9-10), 1451-1465 (2017).
  17. Joo, Y., et al. Chronic immobilization stress induces anxiety- and depression-like behaviors and decreases transthyretin in the mouse cortex. Neuroscience Letters. 461 (2), 121-125 (2009).
  18. Jung, S., et al. Decreased expression of extracellular matrix proteins and trophic factors in the amygdala complex of depressed mice after chronic immobilization stress. BMC Neuroscience. 13 (1), (2012).
  19. Seo, J. S., et al. NADPH Oxidase Mediates Depressive Behavior Induced by Chronic Stress in Mice. Journal of Neuroscience. 32 (28), 9690-9699 (2012).
  20. Seo, J. S., et al. Cellular and molecular basis for stress-induced depression. Molecular Psychiatry. 22 (10), 1440-1447 (2016).
  21. Bowman, R. E., Zrull, M. C., Luine, V. N. Chronic restraint stress enhances radial arm maze performance in female rats. Brain Research. 904 (2), 279-289 (2001).
  22. McLaughlin, K. J., Baran, S. E., Wright, R. L., Conrad, C. D. Chronic stress enhances spatial memory in ovariectomized female rats despite CA3 dendritic retraction: Possible involvement of CA1 neurons. Neurowissenschaften. 135 (4), 1045-1054 (2005).
  23. Qin, M., Xia, Z., Huang, T., Smith, C. B. Effects of chronic immobilization stress on anxiety-like behavior and basolateral amygdala morphology in Fmr1 knockout mice. Neurowissenschaften. 194, 282-290 (2011).
  24. Popoli, M., Yan, Z., McEwen, B. S., Sanacora, G. The stressed synapse: The impact of stress and glucocorticoids on glutamate transmission. Nature Reviews Neuroscience. 13 (1), 22-37 (2012).
  25. Bourke, C. H., Neigh, G. N. Behavioral effects of chronic adolescent stress are sustained and sexually dimorphic. Hormones and Behavior. 60 (1), 112-120 (2011).
  26. Eiland, L., Ramroop, J., Hill, M. N., Manley, J., McEwen, B. S. Chronic juvenile stress produces corticolimbic dendritic architectural remodeling and modulates emotional behavior in male and female rats. Psychoneuroendocrinology. 37 (1), 39-47 (2012).
  27. Sun, L., et al. Effects of Hint1 deficiency on emotional-like behaviors in mice under chronic immobilization stress. Brain and Behavior. 7 (10), 1-11 (2017).
  28. Kim, K. S., Han, P. L. Optimization of chronic stress paradigms using anxiety-and depression-like behavioral parameters. Journal of Neuroscience Research. 83 (3), 497-507 (2006).
  29. Kim, G., et al. The GABAB receptor associates with regulators of G-protein signaling 4 protein in the mouse prefrontal cortex and hypothalamus. BMB Reports. 47 (6), (2014).
  30. Jangra, A., et al. Honokiol abrogates chronic restraint stress-induced cognitive impairment and depressive-like behaviour by blocking endoplasmic reticulum stress in the hippocampus of mice. European Journal of Pharmacology. 770, 25-32 (2016).
  31. Hurley, L. L., Akinfiresoye, L., Kalejaiye, O., Tizabi, Y. Antidepressant effects of resveratrol in an animal model of depression. Behavioural Brain Research. 268 (5), 1-7 (2014).
  32. Gottesman, I. I., Gould, T. D. The endophenotype concept in psychiatry: etymology and strategic intentions. The American Journal of Psychiatry. 160 (4), 636-645 (2003).
  33. Cryan, J. F., Mombereau, C. In search of a depressed mouse: Utility of models for studying depression-related behavior in genetically modified mice. Molecular Psychiatry. 9 (4), 326-357 (2004).
  34. Son, H., Jung, S., Shin, J., Kang, M., Kim, H. Anti-Stress and Anti-Depressive Effects of Spinach Extracts on a Chronic Stress-Induced Depression Mouse Model through Lowering Blood Corticosterone and Increasing Brain Glutamate and Glutamine Levels. Journal of Clinical Medicine. 7 (11), 406 (2018).
  35. Crowley, J. J., Blendy, J. A., Lucki, I. Strain-dependent antidepressant-like effects of citalopram in the mouse tail suspension test. Psychopharmacology. 183 (2), 257-264 (2005).
  36. Ripoll, N., David, D. J. P., Dailly, E., Hascoët, M., Bourin, M. Antidepressant-like effects in various mice strains in the tail suspension test. Behavioural Brain Research. 143 (2), 193-200 (2003).
  37. Mayorga, A. J., Lucki, I. Limitations on the use of the C57BL/6 mouse in the tail suspension test. Psychopharmacology. 155 (1), 110-112 (2001).
  38. Cryan, J. F., Mombereau, C., Vassout, A. The tail suspension test as a model for assessing antidepressant activity: review of pharmacological and genetic studies in mice. Neurosci Biobehav Rev. 29 (4-5), 571-625 (2005).
  39. Can, A., Dao, D. T., Terrillion, C. E., Piantadosi, S. C., Bhat, S., Gould, T. D. The Tail Suspension Test. Journal of Visualized Experiments. (58), 2-7 (2011).
  40. Weiss, I. C., Pryce, C. R., Jongen-Rêlo, A. L., Nanz-Bahr, N. I., Feldon, J. Effect of social isolation on stress-related behavioural and neuroendocrine state in the rat. Behavioural Brain Research. 152 (2), 279-295 (2004).
  41. Hilakivi, L. A., Ota, M., Lister, R. Effect of isolation on brain monoamines and the behavior of mice in tests of exploration, locomotion, anxiety and behavioral “despair.”. Pharmacology, Biochemistry and Behavior. 33 (2), 371-374 (1989).
  42. Dalla, C., Pitychoutis, P. M., Kokras, N., Papadopoulou-Daifoti, Z. Sex differences in response to stress and expression of depressive-like behaviours in the rat. Current Topics In Behavioral Neurosciences. 8 (2), 97-118 (2011).
  43. Bangasser, D. A., Valentino, R. J. Sex differences in stress-related psychiatric disorders: Neurobiological perspectives. Frontiers in Neuroendocrinology. 35 (3), 303-319 (2014).
  44. Palanza, P. Animal models of anxiety and depression: How are females different?. Neuroscience and Biobehavioral Reviews. 25 (3), 219-233 (2001).
  45. Novais, A., Monteiro, S., Roque, S., Correia-Neves, M., Sousa, N. How age, sex and genotype shape the stress response. Neurobiology of Stress. 6, 44-56 (2017).
  46. Kim, J. G., Jung, H. S., Kim, K. J., Min, S. S., Yoon, B. J. Basal blood corticosterone level is correlated with susceptibility to chronic restraint stress in mice. Neuroscience Letters. 555, 137-142 (2013).
  47. Jeong, J. Y., Lee, D. H., Kang, S. S. Effects of Chronic Restraint Stress on Body Weight, Food Intake, and Hypothalamic Gene Expressions in Mice. Endocrinology and Metabolism. 28 (4), 288 (2013).
  48. Gould, T. D., Dao, D. T., Kovacsics, C. E. . Mood and anxiety related phenotypes in mice: characterization using behavioral tests. , (2009).

Play Video

Diesen Artikel zitieren
Son, H., Yang, J. H., Kim, H. J., Lee, D. K. A Chronic Immobilization Stress Protocol for Inducing Depression-Like Behavior in Mice. J. Vis. Exp. (147), e59546, doi:10.3791/59546 (2019).

View Video